An informal history of LuaRocks

Hisham Muhammad

April 16, 2013

1 Pre-history: the Kepler build system

We can trace the origins of LuaRocks back to Kepler, a research project that aimed to
build a web development platform using Lua. Kepler brought together the development
of various existing modules such as CGILua and LuaFileSystem, and developed the miss-
ing pieces that were needed to build a complete web stack. The goal was to ultimately
produce packages that would allow a user to install all necessary modules for web de-
velopment easily and use them in an integrated manner. Further, all this had to be done
portably, supporting at least Windows, Linux and Mac OS X. Kepler, therefore, had two
main technical challenges: the development of new modules and the creation of a model
for integrated, portable deployment.

The latter, in particular, had always been an issue in the Lua world (or a non-issue,
depending on who you asked to). Following the Lua traditions of being small, simple
and avoiding setting policies, module authors have often neglected integration matters,
usually dealing with them with responses such as “the module is just one C file; just
copy it to your project” or “just rename the file to whatever you want to call it”, and so
on. This has led to a very fragmented ecosystem, with very little reuse of functionality
between modules. It also made it hard for developers to keep track of which third-party
modules they included in their projects, what were their versions and whether they had
any recent updates with bugfixes, not to mention that in the event of updates the same
manual tweaks would have to be done all over again.

The starting point for Kepler was a set of existing Lua modules that extended the
language with various functionalities, such as networking (LuaSocket), file and directory
manipilation (LuaFileSystem) and manipulating HTML form data (CGILua). These were
separate projects, with different maintainers and their own build systems. Most of those
Lua modules, at the time, shipped with Unix makefiles visibly inspired by the Lua make-
files: many variables allowing the user to modify parameters such as compiler flags and
filenames, often through a separate file called config which contained a series of variable
assignments. The documentation would instruct the user to edit the config file manually
to suit their needs. Often, those makefiles did not include the usual “install” target, or
installed files to locations that didn’t match the standard Lua paths.

On Windows, Kepler sidestepped theses issues by shipping a graphical installer with
pre-compiled modules, so that most users didn’t have to deal with build issues. On Unix
platforms, that approach is not feasible due to ABI and path incompatibilities. Unix users

expected to be able to compile the framework themselves, and to have the build process
configured according to their particular systems. Ideally, such configuration should be
automatic; realistically, it should be at least automatable.

I joined the Kepler project in May 2006, hired by André Carregal to work on inte-
gration issues for Unix. My first task in Kepler was to tackle this problem, and produce
one package for Unix systems that users could unpack and build without having to dive
into the configuration files for each module. This translated to writing one big makefile
that controlled the build process for about a dozen sub-projects, launching their make-
files, setting variables and occasionally editing configuration files with sed. This work
resulted in the Unix package for Kepler 1.0, in November 2006".

From that big makefile, clear patterns emerged on how Lua modules were built and
installed. Also, it was clear that it was not practical to maintain the all-in-one package in
parallel to the development of the sub-projects, as each followed their own release cycle?.
For end-users, upgrading individual modules after the full package was installed was
also a concern. Other languages already dealt with this problem by having their own
portable package managers: some examples are CPAN for Perl, RubyGems for Ruby,
Eggs for Python, Cabal for Haskell. Soon, we decided that this was the direction we
should follow after Kepler 1.0 was released: a high-level build and package manager tai-
lored for Lua modules, which offered abstractions for those common patterns we iden-
tified in Kepler. Indeed, the first mention of LuaRocks in the Lua mailing list by André
Carregal (then describing it as a “concept”) was as early as March 2006, predating my
own involvement with the Kepler project.

2 Road to 1.0

The initial development of LuaRocks ran in parallel with the development of what was
to become Kepler 1.1, an update of the collection of modules, this time targeting Lua 5.1.
The use in Kepler shaped the list of requirements for LuaRocks, such as the initial set of
modules to be supported and portability goals. Another major influence in the design
of LuaRocks was my previous experience implementing the GoboLinux distribution, for
which I also had written a package management tool called Compile. These influences
are quite apparent in the main features of the original design of LuaRocks.

2.1 Parallel installation of module versions

Compared to other existing package managers, the most peculiar requirement was sup-
port for keeping multiple simultaneous versions of the same package in an installed tree,
so that you could, for example, install two modules A and B, where A depends on C

IWhile Lua 5.1 had been released in February 2006, Kepler 1.0 still targeted Lua 5.0, because many mod-
ules had not been ported yet and the majority of the Lua userbase still used that version at the time. Still,
Kepler sub-projects promoted the use of the Lua 5.1 module system, through the Compat-5.1 module, which
implemented the new module system for Lua 5.0.

250me modules, such as Orbit, were written by developers hired by Kepler; others, such as LuaSocket,
were third-party code integrated as part of the core of the package.

version < 2 and B depends on C version > 2. The desire was that LuaRocks should al-
low all four modules to remain installed in the tree simultaneously, and provide runtime
support so that when A or B is loaded, the correct version of C is picked. This was moti-
vated by having to deal with API changes in dependencies while developing modules for
Kepler, especially when those dependencies were also in unstable versions®. One major
problem with Kepler 1.0 was that, because of its monolithic build system, the integration
of modules had to happen in lockstep, which affected testing and slowed down develop-
ment. Supporting parallel versions in LuaRocks meant that developers would not have
to maintain multiple environments in order to test different modules and ensure that they
were properly isolated from each other.

The approach I took for supporting multiple versions was based on the design of the
GoboLinux filesystem hierarchy. GoboLinux is a Linux distribution which has the dis-
tinction of using plain directories as its package database: the subtree of files belonging to
a given package are installed under a private subdirectory, such as /Programs/Lua/5.2.0/,
and those files are integrated in the system through symbolic links, so that different kinds
of files can be found at the expected places, such as /usr/1ib and /usr/include. This
allows multiple versions of packages to be kept on disk simultaneously, and those can be
“enabled” and “disabled” through scripts which adjust the symbolic links. In the origi-
nal design of LuaRocks, I adopted a similar approach, installing the files of each package
under its own subtree of a versioned hierarchy. Instead of symbolic links, LuaRocks pro-
vided its own require function, which checked which package version should be used
for a module, based on previously loaded modules, and dynamically adjusted lookup
paths and then called Lua’s original require function to load the module.

2.2 Rockspecs: declarative package specifications

Package management tools usually specify a file format through which packages are de-
fined. Those files can be as simple as a makefile, as is the case with FreeBSD ports, or
may contain various metadata and embedded build scripts, such as .spec files for the
RPM package manager. For specifying LuaRocks packages, which we call “rocks”, we
devised a file format called “rockspec”, which is actually a Lua file containing a series
of assignments to predefined variable names such as dependencies and description,
defining metadata and build rules for the package.

Rockspecs are loaded by LuaRocks as Lua scripts using an empty Lua environment,
and therefore usual Lua constructs work, but no facilities from the Lua standard libraries
can be used from within rockspec files. However, while rockspecs are imperatively ex-
ecuted, they do not function as a “build script”. A rockspec does not list the sequence
of build operations in order as a makefile or an RPM .spec would (Figure 1a), but rather
contains table definitions which describe the build method declaratively (Figure 1b). This
expands on the design originally developed for the Compile build manager in which
specification files (called “recipes” in Compile) have a recipe_type field that instructs
which build tool should be used: autoconf, makefile, cmake, scons, etc. Based on the
recipe type, Compile is then able to drive the appropriate tool and launch specific call-
back functions written in the recipe file. In LuaRocks, I followed the same approach of

3Such was the case, in particular, when LuaSocket 2.0 was in beta.

%define luaver 5.1 package = "LuaSocket"
Y%define lualibdir %{_libdir}/lua/%{luaver} version = "2.0.2-5"
%define luapkgdir %{_datadirl}/lua/}{luaver} source = {
Name: luasocket url = "http://.../luasocket-2.0.2.tar.gz",
Version: 2.0.2 }
Release: 8%{7dist} description = {
Summary: Network socket extension for Lua summary = "Network support for the Lua
... language",
Source0: http://.../luasocket-2.0.2.tar.gz - ..
PatchO: 1lua-socket-unix-sockets.patch }
... build = {
%prep type = "make",
%setup -q -n luasocket-%{version} build_variables = {
%patch0 -pl -b .unix CFLAGS = "$(CFLAGS) -I$(LUA_INCDIR)",
%build LDFLAGS = "$(LIBFLAG) -0 -fpic",
make %{?_smp_mflags} CFLAGS="Y%{optflags} LD = "$(CCH"
— -fPIC" },
%install install_variables = {
rm -rf $RPM_BUILD_ROOT INSTALL_TOP_SHARE = "$(LUADIR)",
make install INSTALL_TOP_LIB = "$(LIBDIR)"
— INSTALL_TOP_LIB=$RPM_BUILD_ROO0T%{lualibdir} },
< INSTALL_TOP_SHARE=$RPM_BUILD_R0OOT%{luapkgdir} },
%clean -—- ..
rm -rf $RPM_BUILD_ROOT 3
...
(a) RPM .spec file* (b) LuaRocks rockspec®

Figure 1: Excerpts from specification files for LuaSocket 2.0.2 using RPM and LuaRocks,
including basic package identification, download URL and build instructions

defining “build types” (set with the build.type table field), but there are no imperative
callback functions: each build type is entirely parameterized declaratively through table
fields.

Adding the concept of “build types” to LuaRocks was another unusual design de-
cision, compared to language-specific package managers in general. Often, language-
specific repositories favor one specific build tool: easy_install and later pip for Python,
Rake for Ruby, ExtUtils::MakeMaker and later Module::Build for Perl. The Lua world,
however, did not have a standard build system. Still, we wanted to appeal to Lua module
developers in general, beyond the Kepler project. After all, most of the value of a pack-
age management tool is in the size and diversity of its repository of available packages.
This meant we’ve had to make sure that LuaRocks adapted to the variety of practices of
Lua module authors, and not the other way around. This was also a way to future-proof
LuaRocks in case any of the many proposed Lua-based build tools gained traction in the
community.

The first beta of LuaRocks, version 0.1, shipped with support for three build types:
make, cmake and command. The make type was expected to be the most used, since all
Kepler packages used makefiles and we thought this to be the most common practice
among Lua module authors, at least on Unix. The cmake build type was the first code
contribution by a developer from outside the Kepler team, very early in the project’s
lifetime: Peter Drahos contributed it with an eye on using LuaRocks as a base for the
LuaDist project, which aimed to build a Lua distribution entirely built using CMake. The
command type is a catch-all backend for unsupported build tools: it allows writing a pair of

4

commands in the rockspec (build.build_command and build.install_command) which
are launched using os.execute.

The contribution of the cmake type seemed to confirm our initial suspicions that de-
velopers would contribute various build backends to the tools and we would have to
deal with a varied ecosystem of build tools for Lua. However, ever since, no other build
backends were submitted for inclusion in LuaRocks by developers. This was perhaps
influenced by the fact that as early as 0.3, we introduced a new build type, then called
simply module, but since renamed to builtin. While there were a few Lua-based build
tools around by then (Premake, Prime Mover, LualBS, Meique, and more were released
since), we realized that the actual most common method of distribution of Lua modules
was to use no build tool at all: many modules are pure Lua, or a single .c file, and their
authors often just put them online and write a README advising the user to download
the files and add them to their project. The builtin build type was designed for those
cases: pure Lua modules need only to be listed in the modules table; it also launches the
C compiler passing proper flags and supports both building from a single C file as well
as linking multiple objects into a module. We specifically implemented internal support
for the GCC and Visual Studio toolchains, covering the platforms supported by Kepler.
This also provided an easy way for developers who often shipped Unix-only makefiles
to support Windows builds.

The builtin backend proved to be quite popular. As of this writing, of the 258
projects in the LuaRocks repositories, 195 of them use the builtin build type, and only
26 use make. In particular, from those 195 rocks, 29 of them originally used the make build
type and later switched to builtin, suggesting that it was a good strategy to allow de-
velopers to warm up to the idea of using LuaRocks by letting them start to use it along
with their existing build systems. The make build type often exposed shortcomings in
the developers’ makefiles, such as poor support for specifying custom install paths and
linker flags. This was often noticed when Mac users attempted to install rocks written by
Linux developers and vice versa, and also as developers transitioned from x86 to x86-64.
The builtin type handles those issues transparently.

2.3 Portability

The initial portability requirements were set by the Kepler project: Windows, Linux and
Mac OS X. I started by targeting Unix platforms, as we already had a build system in
place for those platforms and LuaRocks was built from that. The build differences be-
tween Mac and Linux that affected building Lua modules were already understood and
implemented in the Kepler makefiles, so we only had to make sure that those differences
were properly abstracted.

The remaining challenge was supporting Windows. Before LuaRocks, Kepler devel-
opers built Windows packages using Visual Studio projects or custom makefiles written
for Microsoft nmake. We managed to reuse those nmake makefiles through the make build
type in LuaRocks, but the Kepler conventions set as defaults for that build type were not
useful for other developers, so supporting nmake on Windows and GNU Make on Unix

3Full file at http: //pkgs . fedoraproject.org/cgit/lua-socket.git/tree/lua-socket.spec?h=f18
4Full file at http: //luarocks.org/repositories/rocks/luasocket-2.0.2-5.rockspec

0.4.1 05.2
0.4 0.5.1 2.0.7
0.3.2 05 2.041 2.0.6 2.0.8 2.0.10
0.2 031043 2.0.1 2.0.4 2.0.7.1 2.0.12
0.1 0.3 042 06 1.0 1.0.1 2.0 2.0.2 2.03 2.05 2.09 2011

s s s s e s s s s s B B B B B B B B B B
2007 2008 2009 2010 2011 2012

Figure 2: Timeline of LuaRocks releases

never saw widespread use. For most Kepler modules, we eventually dropped the use of
makefiles, and instead opted to use the builtin build type, which invokes the Microsoft
compiler directly.

Another portability issue was how to perform filesystem operations in the tool itself.
For bootstrapping purposes, LuaRocks is written as a pure Lua application and does not
assume the availability of any other Lua modules in the system. To perform operations
not provided by stock Lua, such as manipulating directories or downloading remote files,
it can either launch external programs (e.g. wget) or use additional modules such as
LuaSocket, depending on what is available. The original idea was that on Unix we could
ship a pure Lua program that would initially run making use of external programs and
then would use itself to optionally install the extra modules; on Windows, where those
external programs are not available by default, the bootstrap mode would not work but
we would ship a “fatter” package including all needed module dependencies, akin to
the Kepler installer. However, we ended up using the bootstrap mode on Windows as
well: with very few modifications, Peter Draho$ managed to use LuaRocks without any
additional Lua modules on Windows by using UnxUltils, a collection of programs that
simulates a minimal Unix command-line environment (cp, rm, etc.). Ever since, we've
been shipping those binaries along with the LuaRocks .zip distribution on Windows®.

2.4 Release cycle and reception

The first release tarball, labeled 0.1, vas published in August 2007. A 0.2 release followed
two months later. In late 2007 we released 0.3, the first to contain the builtin build type
(then called module) and the first to be packed as a Windows-friendly .zip file, bundling
UnxUtils and containing an installer batch file. Over the next few months, development
picked up speed with a series of 0.x releases in the first half of 2008, in the typical “re-
lease early, release often” tradition of open source software. After thirteen 0.x releases,
LuaRocks 1.0 was released in September 2008 (See Figure 2).

During that period, the collection of available rocks grew slowly but steadily. Besides
packaging the Kepler modules as rocks, I went looking for popular modules to package,
taking a clue from the list of top downloads for LuaForge, which had become at the time
the standard catalog of Lua projects. The success of LuaForge was a powerful indica-
tor of the existance of a considerable demographic of module authors and perhaps even
their willingness to coalesce into a community, if given the resources. By writing lots of
rockspecs myself, I wanted to build momentum to the tool, iron out its feature set ac-

®In fact, “bootstrap mode” proved to be less problematic on Windows than “Lua-module-based mode”:
due to the semantics of Windows filesystems, attempting to remove rocks that are in use by LuaRocks itself
causes problems. There has been discussion on how to work around this problem, but it is still an open
issue.

cording to the needs of existing modules, and provide the community with examples of
best practices to follow when writing rockspecs. Eventually, we started receiving contri-
butions of rockspecs written by the module authors themselves. I also started compiling
a list of new rockspecs and added them to the release notes of each beta, to stress on the
Lua mailing list the fact that the repository was growing and the tool was getting more
and more useful. I saw this certain amount of “good publicity” as necessary, as there was
clearly a resistance in parts of the Lua community against any kind of policy.

I knew quite well where I was going into, and that shipping a portable tool that would
play nicely with all the different environments out there would be thorny. Every single
mistake or omission echoed for a long time. For example, out of the desire of playing
nicely with module authors’ existing infrastructures, we favored the make build type early
on, whenever a module included a makefile. Many of those makefiles, however, did not
properly use the users’ CFLAGS. When the emergence of x86-64 platforms made handling
the -fpic flag mandatory, many rocks that relied on those makefiles were broken on those
systems. While the builtin type was soon fixed to handle this flag transparently (even
though it allowed for users to configure it from day one), older rocks (or rather, upstream
makefiles) would still need to be fixed. Still, for long, users would refer to those failures
as the “LuaRocks -fpic bug”. As we got reports of broken make-based rocks, it was
often easier to just convert them to the builtin type and bypass the upstream makefile
entirely”.

LuaRocks was also met with resistance by users of package managers in Linux distri-
butions, who wanted to have modules available as native packages, rather than installing
yet another package manager. This feeling is understandable, but comparing the sheer
numbers of packages provided by distributions versus the number of modules available
in mature module repositories from scripting languages, it becomes clear that the ap-
proach of converting everything into native packages is untenable: for example, while
Ubuntu features 37,000 packages, Perl’s CPAN alone contains over 23,000. These num-
bers make a good case for having portable package managers for scripting languages.
While the number of available Lua modules is still far from that, it doesn’t mean the
potential isn’t there.

Having experience as a maintainer of a Linux distribution myself, I went out of my
way to avoid clashes with files managed by the host operating system. At first, this meant
going against end-user expectations: the default behavior of LuaRocks running as an un-
priviledged user was to install modules in a private location of the users” home directory
(typically 7/ .luarocks on Unix). As LuaRocks evolved as a build tool I hoped that some
integration would be possible with package managers, such as adding LuaRocks meta-
data into .rpm or .deb files, but while there were some talks with distro maintainers,
those never went very far®.

In spite of those challenges, the LuaRocks 1.0 release cycle achieved its goals. Kepler
1.1 was released in June 2008 using LuaRocks in its installer. Later, all-in-one packages

7Out of this frustration with the state of upstream makefiles, I added a page called “Recommended prac-
tices for Makefiles” to the LuaRocks documentation: http://luarocks.org/en/Recommended_practices_
for_Makefiles

80ne positive metric, though, is that in all these years we have never received a single bug report from
distribution users or maintainers that LuaRocks was breaking other things in their systems.

were also distributed for Unix and Windows which contained Lua, LuaRocks and the
Kepler modules. Sputnik, a wiki/content management system which was developed
by Yuri Takhteyev in close cooperation with Kepler, also integrated LuaRocks into its
distribution package. The Sputnik package made a creative use of LuaRocks, bundling it
as its installer tool and using it as a plugin manager.

3 The redesign for 2.0

After LuaRocks 1.0, we slowed down the pace of releases. Incidentally, my two-year
contract with Kepler expired around that time, and the project was struggling to find
funding to sustain itself. Many of the Kepler subprojects had built a userbase around
then, so those of us who were invested in it decided to carry on with them as volunteer
open source projects. I remained as the lead maintainer of LuaRocks, and we carried the
project forward.

With version 1.0, the rockspec format was declared frozen, so new releases of the
tool could not introduce features that broke compatibility. This was intended to give
developers a stable target when writing rockspecs, to allow Linux distributions to pick
up the package and to give the project an overall aura of stability. A minor release, 1.0.1,
followed six months after 1.0, containing bugfixes and minor features for the command-
line tool. Around that time, we had enough feedback from users and developers so that
we could start thinking about changes for the next major revision.

3.1 The revised tree structure

The number one complaint about LuaRocks was that it required patching the standard
require function from Lua. Modules that modify the standard globals of Lua, either
redefining functions or adding entries to the standard module tables, always got some
criticism at the Lua mailing list, but it was not consensually considered a bad practice:
modules such as stdlib and lua-ex did it, to cite two examplesg. In the original de-
sign of LuaRocks, we chose to wrap require so that version constraints could be passed
as extra parameters. This would allow programmers to write down versioning require-
ments explicitly in their own scripts, doing, for instance, require ("socket", ">=2.0").
The standard require function ignores additional parameters, so the script would re-
main compatible with standard Lua, while users loading the luarocks.require module
would benefit from versioning support. This, however, also meant that every LuaRocks
user had to load luarocks.require in order to use modules installed with LuaRocks,
since the module files were not installed in standard Lua locations. We did not consider
that a strong limitation at first since RubyGems also required its users to issue a similar
require ’rubygems’ command!?.

In actual practice, most users didn’t need any of the features provided by our cus-
tom require function, namely, specifying versioning in scripts and handling multiple

90ver time, however, that practice got more and more frowned upon, to the point that, as of Lua 5.2, the
expected behavior is that modules shouldn’t even register their own table as a global, but only return itself
through the output of require.
10That was true up to Ruby 1.8; after that, RubyGems support is preloaded by default in Ruby

versions of the same module simultaneously. The latter was the main motivator for the
custom directory structure, which was what prevented one feature that many users did
want: the ability to load installed modules from vanilla Lua, without any additional run-
time support.

Being compatible with vanilla Lua meant changing the directory structure so that it
matched the default lookup paths used by the standard loaders. The immediate conse-
quence was that modules from different rocks are moved into a common directory, so
manifest files became indispensible for keeping track of which files belong to each rock.
This was not a major problem, because we already used a manifest file to cache this map-
ping for performance reasons, but it required adding consistency checks for orphaned
files. Those manifest files are essentially a plain-text database for package management,
implemented as Lua tables. Each rock has its own rock_manifest file (containing also
the MD5 sum for each deployed file), and a global manifest file caches dependency in-
formation from all installed rockspecs, as well as mappings from modules to rocks and
from rocks to modules.

This change broke compatibility with existing installations, so users of LuaRocks 1.0.x
had to purge their installations and start over. The rockspec format, however, remained
the same. Our decision of keeping the installation structure properly abstracted in vari-
ables proved to be correct. In fact, when building a rock LuaRocks 2.0 creates a temporary
directory and installs the rock there using a LuaRocks-1.0-style tree, and then creates the
manifest and deploys the files to their final destinations. This has the side effect that the
installation directories passed through variables to the build systems of modules (such as
Makefiles) are not their actual, final locations: this is good because it prevents develop-
ers from successfully hardcoding directories to their installations, and therefore modules
built with LuaRocks are, by necessity, relocatable. Relocatable binaries are not the norm
in the Unix world, but they are expected on Windows. This is still an occasional source of
complaints from developers who want to hardcode paths to resource files or to generate
documentation at build time that refers to absolute paths, but at this point supporting
relocatable binaries seems a more useful feature.

Once we moved to the new format, a question was how to retain the features that the
custom require used to provide. We still wanted to support the installation of multiple
versions of a rock (and, in all honesty, we didn’t want to have to figure out how to deal
with removing older versions, in light of possible cascading dependency conflicts). In the
LuaRocks 1.0 design, two versions of, say, socket.so were simply installed to different
directories. With a single directory for installing modules, we had to figure out what to
do.

The solution was to rename old modules so they can coexist in the same directory
(adding rock name and version as a prefix), and provide a custom package loader that
translates the names based on the versions of previously loaded modules, in a similar
mechanism to the require function of LuaRocks 1.0. The idea is that plain Lua will al-
ways find the latest installed version of each module, as that file will have a standard
pathname such as /usr/local/lib/lua/5.1/socket.so, and users who need support
for loading different versions can load luarocks.loader, a module that installs a custom
package loader, which is the proper extensibility mechanism for the require function.
This loader keeps in memory a “context”, which is the list of previously required mod-

260 T T T T T T T T T T T T T

240 |- .
220 | .
200 - .
180 |- | .
160 |- . .
140 - .

120 - *

100 Lo im0 L L Lo L L L
2009 2010 2010 2011 2011 2012 2012 2013 2013
07 01 07 01 07 01 07 01 07

Figure 3: Number of modules in the LuaRocks repository during the 2.0 series, from
October 2009 to March 2013

ules, the rocks they belong to and their dependencies, so that when a new module is
required, versions are picked based on dependencies from the current context. Once a
module is selected, LuaRocks keeps track if the file has a plain name or if it was prefixed,
and then that name is forwarded to the standard Lua loaders.

This approach is straightforward for Lua scripts because the package loader for Lua
files does not mandate that modules must match their filenames. C modules, however,
cannot be renamed to any name, because the standard loader for C files expects to find
an exported symbol whose name matches that of the module being required, such as
luaopen_socket for the socket.so module. Fortunately, Lua provides support for em-
bedding versioning to a C module filename through a prefix: as the Lua manual de-
mostrates, “if the module name has a hyphen, its prefix up to (and including) the first
hyphen is removed. For instance, if the module name is a.v1-b.c, the function name will
be luaopen_b_c”. In the above example, an older version of socket.so will be renamed
to luasocket_2_0_1_3-socket.so, and the LuaRocks package loader decides which file
to load based on the context.

Explicit versioning can no longer be done passing additional arguments to require,
but users who wish to configure versioning programmatically can use a function from the
luarocks.loader module called add_context, which pre-configures the loader to add a
given rock version to its operating context.

3.2 Release cycle and reception

LuaRocks 2.0 was released in October 2009. Apart from a couple of release candidates,
there were no betas this time. The change in the format of the local trees was substan-
tial, and we wanted the transition to be a one-time event. Development happened in
the open!! and was discussed in the mailing list, so interested parties could follow the

HWe originally used CVS hosted by LuaForge, then switched to Subversion in April 2009 and finally
moved to Git hosted by GitHub in August 2010.

10

direction we were going. At the time of release, the changes were not controversial —
my feeling is that retaining full compatibility with both the .rockspec and .rock formats
played a big role in keeping a sense of continuity. Release 2.0 was well-received, and
it was largely seen as a step forward and a declaration of commitment to the project,
especially in the light of the uncertainties around the original Kepler project.

In the early days of LuaRocks, I scanned the LuaForge entries and routinely looked for
module announcements at the Lua mailing list, looking for modules that I could package
as rocks. I did this to populate the repositories, and to test the resilience of the tool in
dealing with different projects and Makefiles. By the time LuaRocks 2.0 was released, I
mostly stopped doing that (except for a few modules whose rockspecs I remain as the de
facto maintainer, such as LPeg), and the repository grew based solely on contributions by
developers. Figure 3, generated from archive snapshots of the repository index, shows
the growth of the collection, from October 2009 when the repository contained exactly
100 projects, up to March 2013, when we just surpassed 250 projects. Another indicative
of a healthy community is that many rockspecs contain dependencies on other rocks,
showing that the culture of module reuse is strengthening.

During this time, the 2.0 series had a number of point releases. No further changes
to the local tree format were made, and save for bugfixes, these releases are essentially
compatible. They were mainly driven by feedback and contributions from users, and
were focused on improving portability, adding new commands to the luarocks and
luarocks-admin command-line tools, and improving user experience with better envi-
ronment detection. Some of the features were in fact developed as contract work, spon-
sored by companies using the tool, and shared back into the LuaRocks code base.

4 Current status and recent developments

LuaRocks is used in production systems around the world and is included in repositories
of various Linux distributions. As of this writing, the rocks repository features 750 rock-
specs for 258 different projects. The directions of development nowadays are essentially
dictated by the needs of the community, while trying to balance concerns of compatibil-
ity, portability and the social aspect of trying to be a welcoming platform: we need to
cater not only to the needs of those who already use LuaRocks, but try to appeal to Lua
module developers who still don’t use it. For many developers, especially those used to
other languages that already have similar ecosystems in place, LuaRocks is their intro-
duction to writing and sharing Lua modules, so the least hoops they have to jump to be
able to contribute, the better.

4.1 Compatibility

The LuaRocks codebase is compatible with both Lua 5.1 and 5.2. The version of Lua to
be used can be either detected by the configure script at installation time, or explicitly
selected by the user. Lua 5.2 support was added by removing hardcoded references to
Lua 5.1 and detecting features at runtime — the same installation can run with Lua 5.1 or
5.2, given proper configuration files. When Lua 5.2 was first released, it was not clear how
developers (which are, after all, the LuaRocks userbase) would manage the transition.

11

It was expected that some would remain using Lua 5.1, so dropping support for that
version was out of the question. What we didn’t know was if users would be interested
in running LuaRocks with Lua 5.1 and 5.2 at the same time, and if they would prefer to do
so with a single LuaRocks installation or would install two copies in parallel. We ended
up supporting both approaches, but they require crafting configuration files carefully.
There is still room for improvement, to make it easier for developers to test their modules
in both Lua 5.1 and 5.2.

Another issue during this transition was the compatibility of the various modules in
the repository with Lua 5.2. LuaRocks always supported specifying a version of Lua in
the dependencies table of rockspecs. Most rockspecs, however, optimistically specified
their Lua compatibility as "1lua >= 5.1", only to learn that those modules were not fully
compatible with Lua 5.2 upon its release. We’ve been dealing with this on a case-by-case
basis: as we get reports of compatibility problems in the LuaRocks mailing list, we fix
the rockspecs accordingly. Another question was whether to maintain separate module
repositories for Lua 5.1 and 5.2. So far, we’ve been keeping all modules in a single reposi-
tory, but we may have to revisit this issue in the future if problems arise for Lua 5.1 users,
either with separate repositories or, at least, separate manifest files.

Lua]IT compatibility is another point of concern, as it implements a Lua dialect be-
tween Lua 5.1 and 5.2, plus extensions of its own. Lua]IT is fully compatible with Lua
5.1 and LuaRocks works fine with it in Lua 5.1 mode, but some Lua 5.2 modules may
be turn out to compatible with Lua]IT but not with Lua 5.1 and there’s currently no way
to specify this. Currently, LuaRocks does not implement explicit detection for Lua]IT,
which could be useful, for example, for handling modules written using the LuaJIT FFL.
Still, we haven’t heard much from the LuaJIT user community, and in any case it would
be easy to have a separate repository for FFI-based modules.

4.2 The rocks repository

The mailing list and the default rocks repository are the epicenters of the LuaRocks com-
munity. The repository has a simple generated index webpage which lists all rocks, along
with their descriptions and versions. I receive rockspecs via the mailing list and update
the repository using luarocks-admin, with occasional help from Fabio Mascarenhas, an-
other Kepler alumnus. Since this is a manual process, there is usually a delay; developers
can’t publish rocks automatically. This has allowed me to review rockspecs and guide
authors with regard to best practices, and ensure some level of consistency in the nascent
repository, but it’s far from an optimal process. An important aspect of the manage-
ment of the repository is that I don’t curate it in any way. All valid submissions are
included, even if for instance there is already another module that implements the same
functionality. We avoid naming clashes in rocks as a rule for operational reasons, but try
to discourage naming clashes in modules, when those are detected. It is not the task of
the LuaRocks repository to choose between competing modules in the ecosystem; that is
up to the community.

As a future direction, I would like to have a more automated system in place in which
I'wouldn’t be a “bottleneck” for developers wishing to make their code available through

12

LuaRocks. Recently, Leaf Corcoran released MoonRocks'?, a website which provides a
repository where users can register their own rockspecs directly. We’ve discussed the
possibility of eventually turning it (or a variation of it) into the default repository for
rocks, but there are still open questions.

The demise of LuaForge left a void in the Lua community, as there is no definite cat-
alog of projects anymore. The LuaRocks repository serves that role partially, but there
is more to Lua than modules: in 2010 LuaForge already hosted over 500 projects. There
has been an initiative to create a new version of the site around 2009, but nothing mate-
rialized. It would be very nice to see a successor of LuaForge in the future; if that ever
happens, integrating the rocks repository into it would be a logical step.

4.3 The rockspec format

The rockspec format remains largely frozen since LuaRocks 1.0. The only additions were
support for new VCSs as virtual protocols in the source.url field (such as “‘git://”’).
The addition of new protocols was foreseen, so the use of those in earlier versions causes
graceful errors. We also chose to keep feature-for-feature compatibility, but not bug-for-
bug: we fixed the code in cases of incorrect behavior, so there are in fact rockspecs in the
repository which only work with later LuaRocks versions, but the published specification
of the rockspec format remains the same since 1.0. We felt this was important so that
developers felt confidence in expending the effort of learning the format.

Since then, we have identified some shortcomings in the specification and possibili-
ties for improvement. The next major release of LuaRocks will probably be a good time
for a major revision of the specification, while certainly keeping backward compatibility.
LuaRocks is prepared to recognize incompatibilities through the rockspec_format field
since version 1.0, so the transition shouldn’t be very traumatic, especially if we imple-
ment support for LuaRocks to upgrade itself, which is another frequent wishlist item.

2http://rocks.moonscript.org/

13

