A PEG-based Macro System for Lua

Fabio Mascarenhas', Sérgio Medeiros!

'Departamento de Informética — PUC-Rio
Av. Marqués de Sao Vicente, 225 — Rio de Janeiro — RJ — Brazil

mascarenhas@acm.org, smedeiros@inf.puc-rio.br
Abstract.

Resumo.

1. Introduction

2. An Overview of Luma

Luma is a macro system for the Lua language that is heavily inspired by Scheme’s
define-syntax/syntax-rules system [?]. The Scheme macro system uses pat-
tern matching to analyze the syntax of a macro, and template substitution to build the
code that the macro expands to. This is a powerful yet simple system that builds on top
of Scheme’s structural regularity (the use of S-expressions for all code).

Luma also separates the expansion process in pattern matching and template sub-
stitution phases, but as Lua source is unstructured text the pattern and template languages
have to work with text. Luma uses LPEG [?] for pattern matching and Cosmo [?] for
templates.

LPEG is a Lua implementation of the Parsing Expression Grammars (PEG) for-
malism [?], an EBNF-like formalism that can define a parser for any unambiguous lan-
guage. PEG is different from other grammatical formalisms in that it can easily be used
to define both the lexical and the structural (syntactical) levels of a language. Cosmo is a
template language not unlike template languages used for web development, and supports
both simple textual substitution and iteration.

A Luma macro then consists of a pattern, a template and optional definitions typ-
ically used to produce an environment suitable for Cosmo from the LPEG output. The
template can also be a function that Luma calls with the captures produced by LPEG and
which returns a template for expansion. When you define a macro you also need to sup-
ply a selector, which Luma will use to identify applications of that macro in the code it’s
expanding. A selector can be any valid Lua identifier.

Macroexpansion is recursive: if you tell Luma to expand the macros in a chunk of
Lua code Luma will keep doing expansion until there are no more macro applications in
the code. This means that Luma macros can expand to code that uses other macros, and
even define new macros. A macro application has the form:

selector [[
macro text

1]

where the macro text can have balanced blocks of [[and]]. If Luma has no macro
registered with that selector it just leaves that application alone (in effect it expands to
itself). This syntax for macro applications is not completely alien to Lua, as most macro
applications will be valid Lua code (a function call with a long string), but also guarantees
that all macro applications are clearly delimited when mixed with regular Lua code.

When expanding a macro Luma invokes LPEG with the macro’s pattern and the
supplied text, then passes the template and captures to Cosmo, and replaces the macro
application with the text Cosmo returns (recursively doing macroexpansion on this text).

The next section shows a complete implementation of a Luma macro, including
an example of its application.

3. Walkthrough of a Luma Macro

The macro example in this section is taken from a paper on Scheme macros [?]. We think
it is a good example because the syntax for this macro is quite removed from normal Lua
syntax, in effect the macro embeds a domain specific language inside Lua, which com-
piles to efficient Lua code via macroexpansion. Our macro defines Deterministic Finite
Automata. A description of the automaton is supplied as the macro text, and it expands to
a function which receives a string and tells if the automaton recognizes this string or not.
The following Lua code uses the macro to define and use a simple automaton:

require_for_syntax|[[automaton]]

local aut = automaton [[
init: ¢ —-> more
more: -> more

a
d —> more
r => finish
finish: accept
1]
print (aut ("cadar")) —— prints "true"
print (aut ("caxadr")) —-- prints "false"

You execute this code by saving it to a file and calling the Luma driver script,
luma, on it. The driver macroexpands the file and then supplies the expanded code to the
Lua interpreter. The require_for_syntax macro requires a Lua module (in this case
the module aut omaton. lua, which will define the aut omaton macro) at expansion
time, so any macros defined by the module are available when expanding the rest of the
code.

An automaton has one or more states and each state has zero or more transition
rules and an optional tag that marks that state as a final (acceptance) state. Each transition
rule is a pair of a character and a next state. The macro’s syntax codifies that in an LPEG
pattern (a Lua string):

local syntax = [][
aut <- _ state+ —-> build_aut
char <= (["1{[1}¥0"1 / {.}) _
rule <- (char ’"->’ _ {name} _) —-> build_rule

state <-= ({name} _ ":’ _ (rulex —-> {}) {’accept’?} _)

-> build_state
1]

LPEG patterns extends regular PEG with captures: curly brackets ({}) around an pattern
item tell LPEG to capture the text that matched that item, and a right arrow (->) tells
LPEG to pass the captures of the pattern item to the left of the arrow to the function to
the right (or collect the captures in a Lua table in the case of —>{}. The functions are
part of the optional set of defitions. Luma defines a few default expressions that can also
be referenced in patterns: spaces and Lua comments (_), Lua identifiers (name), Lua
numbers (numbers), and Lua strings (string). The first PEG production is always
used to match the text (aut in the case of the pattern above).

The defitions for the aut omat on macro contain the functions referenced in the

syntax:
local defs = {
build_rule = function (¢, n)
return { char = ¢, next = n }
end,
build_state = function (n, rs, accept)
local final = tostring(accept == "accept’)
return { name = n, rules = rs, final = final }
end,
build_aut = function (...)
return { init = (...).name, states = { ... },
substr = luma.gensym(), ¢ = luma.gensym(),
input = luma.gensym(), rest = luma.gensym() }
end

}
This is regular Lua code. What these functions do is to put the pattern captures in a form
suitable for use by the template. As Luma uses Cosmo this means tables and lists. The
top-level function, build_aut, builds the capture that is actually passed to Cosmo, so
it also defines any names that the code will need to use for local variables so they won’t
clash with the names supplied by the user (in effect this is manual macro hygiene [?]).

The template is a straightforward tail recursive implementation of an automaton
in Lua code:

local code = [[(function ($input)
local S$substr = string.sub
Sstates|[=]

local Sname

1=]

Sstates|[=]
Sname = function (Srest)
if #Srest == 0 then
return $final
end

local $Sc = Ssubstr(Srest, 1, 1)
Srest = S$substr(Srest, 2, #Srest)

Srules|[==
if $c == ’Schar’ then
return S$Snext (Srest)
end
1==]
return false
end
1=]
return $init ($input)
end)]]

Cosmo replaces standalone $name by the corresponding text in the table that Luma passes
to it, and forms such as $name[=[text]=] and $name[==[text]==] by iterating over the
corresponding list and using each element as an environment to expand the text (as an
example, if foo is a list containing the elements { bar = “1” }, { bar = “2” }, and { bar
= “37 }, $foo[=[$bar]=] becomes the string 123.

Defining the macro is a matter of telling Luma the selector and components of the
macro:

luma.define ("automaton", syntax, code, defs)

As Luma uses LPEG as pattern language, macros that embed part of the Lua
syntax (creating a localized syntactical extension) can be easily built by using a Lua parser
written for LPEG, such as Leg [?]. The Luma distribution has samples such as a class
system, try/catch/finally exception handling, list comprehensions, Ruby-like blocks, and
declarative pattern matching, all built using Luma and Leg.

4. Other Macro Systems

4.1. Conclusion

