
Creating Excel files with xlsxwriter.lua
Release 0.0.4

John McNamara

April 14, 2014

CONTENTS

1 Introduction 3

2 Getting Started with xlsxwriter 5
2.1 Installing xlsxwriter . 5
2.2 Running a sample program . 6
2.3 Documentation . 7

3 Tutorial 1: Create a simple XLSX file 9

4 Tutorial 2: Adding formatting to the XLSX File 13

5 Tutorial 3: Writing different types of data to the XLSX File 17

6 The Workbook Class 21
6.1 Constructor . 21
6.2 workbook:add_worksheet() . 22
6.3 workbook:add_format() . 23
6.4 workbook:close() . 24
6.5 workbook:set_properties() . 24
6.6 workbook:define_name() . 25
6.7 workbook:worksheets() . 27

7 The Worksheet Class 29
7.1 worksheet:write() . 29
7.2 worksheet:write_string() . 31
7.3 worksheet:write_number() . 33
7.4 worksheet:write_formula() . 33
7.5 worksheet:write_array_formula() . 35
7.6 worksheet:write_blank() . 36
7.7 worksheet:write_boolean() . 36
7.8 worksheet:write_date_time() . 37
7.9 worksheet:write_date_string() . 38
7.10 worksheet:set_row() . 38
7.11 worksheet:set_column() . 40
7.12 worksheet:get_name() . 41
7.13 worksheet:activate() . 42

i

7.14 worksheet:select() . 42
7.15 worksheet:hide() . 43
7.16 worksheet:set_first_sheet() . 44
7.17 worksheet:merge_range() . 44
7.18 worksheet:set_zoom() . 45
7.19 worksheet:right_to_left() . 46
7.20 worksheet:hide_zero() . 46
7.21 worksheet:set_tab_color() . 46

8 The Worksheet Class (Page Setup) 47
8.1 worksheet:set_landscape() . 47
8.2 worksheet:set_portrait() . 47
8.3 worksheet:set_page_view() . 47
8.4 worksheet:set_paper() . 48
8.5 worksheet:center_horizontally() . 49
8.6 worksheet:center_vertically() . 49
8.7 worksheet:set_margins() . 49
8.8 worksheet:set_header() . 50
8.9 worksheet:set_footer() . 53
8.10 worksheet:repeat_rows() . 53
8.11 worksheet:repeat_columns() . 53
8.12 worksheet:hide_gridlines() . 54
8.13 worksheet:print_row_col_headers() . 54
8.14 worksheet:print_area() . 55
8.15 worksheet:print_across() . 55
8.16 worksheet:fit_to_pages() . 55
8.17 worksheet:set_start_page() . 56
8.18 worksheet:set_print_scale() . 57
8.19 worksheet:set_h_pagebreaks() . 57
8.20 worksheet:set_v_pagebreaks() . 58

9 The Format Class 59
9.1 format:set_font_name() . 60
9.2 format:set_font_size() . 60
9.3 format:set_font_color() . 61
9.4 format:set_bold() . 61
9.5 format:set_italic() . 61
9.6 format:set_underline() . 62
9.7 format:set_font_strikeout() . 62
9.8 format:set_font_script() . 62
9.9 format:set_num_format() . 62
9.10 format:set_locked() . 65
9.11 format:set_hidden() . 66
9.12 format:set_align() . 66
9.13 format:set_center_across() . 67
9.14 format:set_text_wrap() . 67
9.15 format:set_rotation() . 68
9.16 format:set_indent() . 68

ii

9.17 format:set_shrink() . 69
9.18 format:set_text_justlast() . 69
9.19 format:set_pattern() . 70
9.20 format:set_bg_color() . 70
9.21 format:set_fg_color() . 71
9.22 format:set_border() . 71
9.23 format:set_bottom() . 72
9.24 format:set_top() . 72
9.25 format:set_left() . 72
9.26 format:set_right() . 72
9.27 format:set_border_color() . 73
9.28 format:set_bottom_color() . 73
9.29 format:set_top_color() . 73
9.30 format:set_left_color() . 73
9.31 format:set_right_color() . 74

10 Working with Formats 75
10.1 Creating and using a Format object . 75
10.2 Format methods and Format properties . 75
10.3 Format Colors . 77
10.4 Format Defaults . 77
10.5 Modifying Formats . 77

11 Working with Cell Notation 79
11.1 Relative and Absolute cell references . 79

12 Cell Utility Functions 81
12.1 rowcol_to_cell() . 81
12.2 rowcol_to_cell_abs() . 81
12.3 cell_to_rowcol() . 82
12.4 col_to_name() . 82
12.5 range() . 83
12.6 range_abs() . 83

13 Working with Dates and Time 85

14 Working with Colors 89

15 Working with Memory and Performance 91
15.1 Performance Figures . 92

16 Examples 93
16.1 Example: Hello World . 93
16.2 Example: Simple Feature Demonstration . 94
16.3 Example: Array formulas . 95
16.4 Example: Merging Cells . 97
16.5 Example: Adding Defined Names . 98
16.6 Example: Write UTF-8 Strings . 100
16.7 Example: Convert a UTF-8 file to a Worksheet . 101

iii

16.8 Example: Setting Document Properties . 102
16.9 Example: Setting Worksheet Tab Colours . 104
16.10Example: Hiding Worksheets . 105
16.11Example: Adding Headers and Footers to Worksheets 107
16.12Example: Indenting Text in a Cell . 110

17 Known Issues and Bugs 113
17.1 Content is Unreadable. Open and Repair . 113
17.2 Formulas displayed as #NAME? until edited . 113
17.3 Formula results displaying as zero in non-Excel applications 113
17.4 Strings aren’t displayed in Apple Numbers in ‘constant_memory’ mode 114
17.5 Images not displayed correctly in Excel 2001 for Mac and non-Excel applications . . 114

18 Reporting Bugs 115
18.1 Upgrade to the latest version of the module . 115
18.2 Read the documentation . 115
18.3 Look at the example programs . 115
18.4 Use the xlsxwriter Issue tracker on GitHub . 115
18.5 Pointers for submitting a bug report . 115

19 Frequently Asked Questions 117
19.1 Q. Can XlsxWriter use an existing Excel file as a template? 117
19.2 Q. Why do my formulas show a zero result in some, non-Excel applications? 117
19.3 Q. Can I apply a format to a range of cells in one go? 117
19.4 Q. Is feature X supported or will it be supported? . 118
19.5 Q. Is there an “AutoFit” option for columns? . 118
19.6 Q. Do people actually ask these questions frequently, or at all? 118

20 Changes in XlsxWriter 119
20.1 Release 0.0.4 - April 14 2014 . 119
20.2 Release 0.0.3 - April 9 2014 . 119
20.3 Release 0.0.2 - April 6 2014 . 119
20.4 Release 0.0.1 - March 29 2014 . 119

21 Author 121
21.1 Donations . 121

22 License 123

Index 125

iv

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Xlsxwriter is a Lua module for creating Excel XLSX files.

Xlsxwriter can be used to write text, numbers and formulas to multiple worksheets in an Excel
2007+ XLSX file. It supports features such as:

• 100% compatible Excel XLSX files.

• Full formatting.

• Memory optimisation mode for writing large files.

• Merged cells.

• Worksheet setup methods.

• Defined names.

• Document properties.

It works with Lua 5.1 and Lua 5.2.

CONTENTS 1

Creating Excel files with xlsxwriter.lua, Release 0.0.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Xlsxwriter is a Lua module for writing files in the Excel 2007+ XLSX file format.

It can be used to write text, numbers, and formulas to multiple worksheets and it supports features
such as formatting.

The main advantages of using Xlswriter are:

• It has a high degree of fidelity with files produced by Excel. In most cases the files produced
are 100% equivalent to files produced by Excel.

• It has extensive documentation, example files and tests.

• It is fast and can be configured to use very little memory even for very large output files.

However:

• It can only create new files. It cannot read or modify existing files.

Xlsxwriter is a Lua port of the Perl Excel::Writer::XLSX and the Python XlsxWriter modules and is
licensed under an MIT/X11 License.

To try out the module see the next section on Getting Started with xlsxwriter .

3

http://search.cpan.org/~jmcnamara/Excel-Writer-XLSX/
http://xlsxwriter.readthedocs.org

Creating Excel files with xlsxwriter.lua, Release 0.0.4

4 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED WITH XLSXWRITER

Here are some easy instructions to get you up and running with the xlsxwriter module.

2.1 Installing xlsxwriter

Xlsxwriter is a pure Lua module and doesn’t need a native compiler to install. However, it has a
dependency on the ZipWriter module which does have binary dependencies.

These dependencies are handled automatically if you use the luarocks or luadist methods
shown below.

2.1.1 Using luarocks

The easiest way to install xlsxwriter is with the luarocks utility:

$ sudo luarocks install xlsxwriter

2.1.2 Using luadist

Another easy “packaged” way of installing xlsxwriter is with the luadist distribution:

$ sudo luadist install xlsxwriter

2.1.3 Cloning from GitHub

The xlsxwriter source code and bug tracker is in the xlsxwriter.lua repository on GitHub. You
can clone the repository and install from it as follows:

$ git clone https://github.com/jmcnamara/xlsxwriter.lua.git
$ cd xlsxwriter.lua$ sudo luarocks make# or$ sudo luadist make

5

https://github.com/moteus/ZipWriter
http://luarocks.org
http://luadist.org
http://github.com/jmcnamara/xlsxwriter.lua

Creating Excel files with xlsxwriter.lua, Release 0.0.4

2.2 Running a sample program

If the installation went correctly you can create a small sample program like the following to verify
that the module works correctly:

local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("hello_world.xlsx")
local worksheet = workbook:add_worksheet()
worksheet:write("A1", "Hello world")
workbook:close()

Save this to a file called hello.lua and run it as follows:

$ lua hello.lua
This will output a file called hello.xlsx which should look something like the following:

If you downloaded a tarball or cloned the repo, as shown above, you should also have a directory
called examples with some sample applications that demonstrate different features of xlsxwriter.

6 Chapter 2. Getting Started with xlsxwriter

https://github.com/jmcnamara/xlsxwriter.lua/tree/master/examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

2.3 Documentation

The latest version of this document is hosted on Read The Docs. It is also available as a PDF.

Once you are happy that the module is installed and operational you can have a look at the rest of
the xlsxwriter documentation. Tutorial 1: Create a simple XLSX file is a good place to start.

2.3. Documentation 7

http://xlsxwriterlua.readthedocs.org
http://github.com/jmcnamara/xlsxwriter.lua/blob/master/docs/xlsxwriter_lua.pdf?raw=true

Creating Excel files with xlsxwriter.lua, Release 0.0.4

8 Chapter 2. Getting Started with xlsxwriter

CHAPTER

THREE

TUTORIAL 1: CREATE A SIMPLE XLSX FILE

Let’s start by creating a simple spreadsheet using Lua and the xlsxwriter module.

Say that we have some data on monthly outgoings that we want to convert into an Excel XLSX
file:

expenses = {{"Rent", 1000},{"Gas", 100},{"Food", 300},{"Gym", 50},}
To do that we can start with a small program like the following:

local Workbook = require "xlsxwriter.workbook"
-- Create a workbook and add a worksheet.
local workbook = Workbook:new("Expensese01.xlsx")
local worksheet = workbook:add_worksheet()
-- Some data we want to write to the worksheet.
local expenses = {{"Rent", 1000},{"Gas", 100},{"Food", 300},{"Gym", 50},}
-- Start from the first cell. Rows and columns are zero indexed.
local row = 0
local col = 0
-- Iterate over the data and write it out element by element.
for _, expense in ipairs(expenses) do

local item, cost = unpack(expense)worksheet:write(row, col, item)worksheet:write(row, col + 1, cost)row = row + 1
end

9

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-- Write a total using a formula.worksheet:write(row, 0, "Total")worksheet:write(row, 1, "=SUM(B1:B4)")
workbook:close()

If we run this program we should get a spreadsheet that looks like this:

This is a simple example but the steps involved are representative of all programs that use xl-
sxwriter, so let’s break it down into separate parts.

The first step is to import the module:

local Workbook = require "xlsxwriter.workbook"
The next step is to create a new workbook object using the Workbook:new() constructor.

Workbook:new() takes one, non-optional, argument which is the filename that we want to create:

local workbook = Workbook:new("Expensese01.xlsx")
The workbook object is then used to add a new worksheet via the add_worksheet() method:

local worksheet = workbook:add_worksheet()

10 Chapter 3. Tutorial 1: Create a simple XLSX file

Creating Excel files with xlsxwriter.lua, Release 0.0.4

By default worksheet names in the spreadsheet will be Sheet1, Sheet2 etc., but we can also
specify a name:

worksheet1 = workbook:add_worksheet() -- Defaults to Sheet1.worksheet2 = workbook:add_worksheet("Data") -- Data.worksheet3 = workbook:add_worksheet() -- Defaults to Sheet3.
We can then use the worksheet object to write data via the write() method:

worksheet:write(row, col, some_data)
Note: Throughout the xlsxwriter API rows and columns are zero indexed. Thus, the first cell
in a worksheet, A1, is (0, 0).

So in our example we iterate over our data and write it out as follows:

-- Iterate over the data and write it out element by element.
for _, expense in ipairs(expenses) do

local item, cost = unpack(expense)worksheet:write(row, col, item)worksheet:write(row, col + 1, cost)row = row + 1
end

We then add a formula to calculate the total of the items in the second column:

worksheet:write(row, 1, "=SUM(B1:B4)")
Finally, we close the Excel file via the close() method:

workbook:close()
And that’s it. We now have a file that can be read by Excel and other spreadsheet applications.

In the next sections we will see how we can use the xlsxwriter module to add formatting and
other Excel features.

11

Creating Excel files with xlsxwriter.lua, Release 0.0.4

12 Chapter 3. Tutorial 1: Create a simple XLSX file

CHAPTER

FOUR

TUTORIAL 2: ADDING FORMATTING TO THE XLSX FILE

In the previous section we created a simple spreadsheet using Lua and the xlsxwriter module.

This converted the required data into an Excel file but it looked a little bare. In order to make the
information clearer we would like to add some simple formatting, like this:

The differences here are that we have added Item and Cost column headers in a bold font, we
have formatted the currency in the second column and we have made the Total string bold.

To do this we can extend our program as follows:

13

Creating Excel files with xlsxwriter.lua, Release 0.0.4

local Workbook = require "xlsxwriter.workbook"
-- Create a workbook and add a worksheet.
local workbook = Workbook:new("Expensese02.xlsx")
local worksheet = workbook:add_worksheet()
-- Add a bold format to use to highlight cells.
local bold = workbook:add_format({bold = true})
-- Add a number format for cells with money.
local money = workbook:add_format({num_format = "$#,##0"})
-- Write some data header.worksheet:write("A1", "Item", bold)worksheet:write("B1", "Cost", bold)
-- Some data we want to write to the worksheet.
local expenses = {{"Rent", 1000},{"Gas", 100},{"Food", 300},{"Gym", 50},}
-- Start from the first cell below the headers.
local row = 1
local col = 0
-- Iterate over the data and write it out element by element.
for _, expense in ipairs(expenses) do

local item, cost = unpack(expense)worksheet:write(row, col, item)worksheet:write(row, col + 1, cost, money)row = row + 1
end

-- Write a total using a formula.worksheet:write(row, 0, "Total", bold)worksheet:write(row, 1, "=SUM(B2:B5)", money)
workbook:close()

The main difference between this and the previous program is that we have added two Format
objects that we can use to format cells in the spreadsheet.

Format objects represent all of the formatting properties that can be applied to a cell in Excel such
as fonts, number formatting, colors and borders. This is explained in more detail in The Format
Class and Working with Formats.

For now we will avoid getting into the details and just use a limited amount of the format function-
ality to add some simple formatting:

14 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-- Add a bold format to use to highlight cells.
local bold = workbook:add_format({bold = true})
-- Add a number format for cells with money.
local money = workbook:add_format({num_format = "$#,##0"})

We can then pass these formats as an optional third parameter to the worksheet.write() method
to format the data in the cell:

write(row, column, token, [format])
Like this:

worksheet:write(row, 0, "Total", bold)
Which leads us to another new feature in this program. To add the headers in the first row of the
worksheet we used write() like this:

worksheet:write("A1", "Item", bold)worksheet:write("B1", "Cost", bold)
So, instead of (row, col) we used the Excel "A1" style notation. See Working with Cell Nota-
tion for more details but don’t be too concerned about it for now. It is just a little syntactic sugar to
help with laying out worksheets.

In the next section we will look at handling more data types.

15

Creating Excel files with xlsxwriter.lua, Release 0.0.4

16 Chapter 4. Tutorial 2: Adding formatting to the XLSX File

CHAPTER

FIVE

TUTORIAL 3: WRITING DIFFERENT TYPES OF DATA TO THE XLSX
FILE

In the previous section we created a simple spreadsheet with formatting using Lua and the xl-sxwriter module.

This time let’s extend the data we want to write to include some dates:

expenses = {{"Rent", "2013-01-13", 1000},{"Gas", "2013-01-14", 100},{"Food", "2013-01-16", 300},{"Gym", "2013-01-20", 50},}
The corresponding spreadsheet will look like this:

17

Creating Excel files with xlsxwriter.lua, Release 0.0.4

The differences here are that we have added a Date column with formatting and made that column
a little wider to accommodate the dates.

To do this we can extend our program as follows:

local Workbook = require "xlsxwriter.workbook"
-- Create a workbook and add a worksheet.
local workbook = Workbook:new("Expensese03.xlsx")
local worksheet = workbook:add_worksheet()
-- Add a bold format to use to highlight cells.
local bold = workbook:add_format({bold = true})
-- Add a number format for cells with money.
local money = workbook:add_format({num_format = "$#,##0"})
-- Add an Excel date format.
local date_format = workbook:add_format({num_format = "mmmm d yyyy"})
-- Adjust the column width.worksheet:set_column("B:B", 15)
-- Write some data header.

18 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:write("A1", "Item", bold)worksheet:write("B1", "Date", bold)worksheet:write("C1", "Cost", bold)
-- Some data we want to write to the worksheet.
local expenses = {{"Rent", "2013-01-13", 1000},{"Gas", "2013-01-14", 100},{"Food", "2013-01-16", 300},{"Gym", "2013-01-20", 50},}
-- Start from the first cell below the headers.
local row = 1
local col = 0
-- Iterate over the data and write it out element by element.
for _, expense in ipairs(expenses) do

local item, date, cost = unpack(expense)
worksheet:write_string (row, col, item)worksheet:write_date_string(row, col + 1, date, date_format)worksheet:write_number (row, col + 2, cost, money)row = row + 1

end

-- Write a total using a formula.worksheet:write(row, 0, "Total", bold)worksheet:write(row, 2, "=SUM(C2:C5)", money)
workbook:close()

The main difference between this and the previous program is that we have added a new Format
object for dates and we have additional handling for data types.

Excel treats different types of input data, such as strings and numbers, differently although it gen-
erally does it transparently to the user. Xlsxwriter tries to emulate this in the worksheet:write()
method by mapping Lua data types to types that Excel supports.

The write() method acts as a general alias for several more specific methods:

• write_string()
• write_number()
• write_blank()
• write_formula()
• write_boolean()

In this version of our program we have used some of these explicit write_ methods for different
types of data:

19

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:write_string (row, col, item)worksheet:write_date_string(row, col + 1, date, date_format)worksheet:write_number (row, col + 2, cost, money)
This is mainly to show that if you need more control over the type of data you write to a worksheet
you can use the appropriate method. In this simplified example the write() method would
actually have worked just as well.

The handling of dates is also new to our program.

Dates and times in Excel are floating point numbers that have a number format applied to display
them in the correct format. Since there is no native Lua date or time types xlsxwriter provides
the write_date_string() and write_date_time() methods to convert dates and times
into Excel date and time numbers.

In the example above we use write_date_string() but we also need to add the number
format to ensure that Excel displays it as as date:

...
local date_format = workbook:add_format({num_format = "mmmm d yyyy"})...
for _, expense in ipairs(expenses) do...worksheet:write_date_string(row, col + 1, date, date_format)...
end

Date handling is explained in more detail in Working with Dates and Time.

The last addition to our program is the set_column() method to adjust the width of column “B”
so that the dates are more clearly visible:

-- Adjust the column width.worksheet:set_column("B:B", 15)
That completes the tutorial section.

In the next sections we will look at the API in more detail starting with The Workbook Class.

20 Chapter 5. Tutorial 3: Writing different types of data to the XLSX File

CHAPTER

SIX

THE WORKBOOK CLASS

The Workbook class is the main class exposed by the xlsxwriter module and it is the only class
that you will need to instantiate directly.

The Workbook class represents the entire spreadsheet as you see it in Excel and internally it
represents the Excel file as it is written on disk.

6.1 Constructor

Workbook:new(filename[,options])
Create a new xlsxwriter Workbook object.

Parameters

• filename – The name of the new Excel file to create.

• options – Optional workbook parameters. See below.

Return type A Workbook object.

The Workbook:new() constructor is used to create a new Excel workbook with a given filename:

local Workbook = require "xlsxwriter.workbook"
workbook = Workbook:new("filename.xlsx")worksheet = workbook:add_worksheet()
worksheet:write(0, 0, "Hello Excel")
workbook:close()

21

Creating Excel files with xlsxwriter.lua, Release 0.0.4

The constructor options are:

• constant_memory: Reduces the amount of data stored in memory so that large files can
be written efficiently:

workbook = Workbook:new(filename, {constant_memory = true})
Note, in this mode a row of data is written and then discarded when a cell in a new row is
added via one of the worksheet write_() methods. Therefore, once this mode is active,
data should be written in sequential row order.

See Working with Memory and Performance for more details.

When specifying a filename it is recommended that you use an .xlsx extension or Excel will
generate a warning when opening the file.

6.2 workbook:add_worksheet()

add_worksheet([sheetname])
Add a new worksheet to a workbook:

Parameters sheetname – Optional worksheet name, defaults to Sheet1, etc.

22 Chapter 6. The Workbook Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Return type A worksheet object.

The add_worksheet() method adds a new worksheet to a workbook.

At least one worksheet should be added to a new workbook. The Worksheet object is used to
write data and configure a worksheet in the workbook.

The sheetname parameter is optional. If it is not specified the default Excel convention will be
followed, i.e. Sheet1, Sheet2, etc.:

worksheet1 = workbook:add_worksheet() -- Sheet1worksheet2 = workbook:add_worksheet("Foglio2") -- Foglio2worksheet3 = workbook:add_worksheet("Data") -- Dataworksheet4 = workbook:add_worksheet() -- Sheet4

The worksheet name must be a valid Excel worksheet name, i.e. it cannot contain any of the
characters [] : * ? / \ and it must be less than 32 characters.

In addition, you cannot use the same, case insensitive, sheetname for more than one worksheet.

6.3 workbook:add_format()

add_format([properties])
Create a new Format object to formats cells in worksheets.

Paramionary properties An optional table of format properties.

Return type A Format object.

The add_format() method can be used to create new Format objects which are used to apply
formatting to a cell. You can either define the properties at creation time via a table of property
values or later via method calls:

format1 = workbook:add_format(props) -- Set properties at creation.format2 = workbook:add_format() -- Set properties later.

6.3. workbook:add_format() 23

Creating Excel files with xlsxwriter.lua, Release 0.0.4

See the The Format Class and Working with Formats sections for more details about Format
properties and how to set them.

6.4 workbook:close()

close()
Close the Workbook object and write the XLSX file.

This should be done for every file.

workbook:close()

Currently, there is no implicit close().

6.5 workbook:set_properties()

set_properties()
Set the document properties such as Title, Author etc.

Parameters properties – Dictionary of document properties.

The set_properties method can be used to set the document properties of the Excel file
created by xlsxwriter. These properties are visible when you use the Office Button ->Prepare -> Properties option in Excel and are also available to external applications that
read or index windows files.

The properties that can be set are:

• title
• subject
• author
• manager
• company
• category
• keywords
• comments
• status

The properties are all optional and should be passed in table format as follows:

workbook:set_properties({title = 'This is an example spreadsheet',subject = 'With document properties',author = 'John McNamara',manager = 'Dr. Heinz Doofenshmirtz',

24 Chapter 6. The Workbook Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

company = 'of Wolves',category = 'Example spreadsheets',keywords = 'Sample, Example, Properties',comments = 'Created with Lua and the xlsxwriter module'})

See also Example: Setting Document Properties.

6.6 workbook:define_name()

define_name()
Create a defined name in the workbook to use as a variable.

6.6. workbook:define_name() 25

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Parameters

• name – The defined name.

• formula – The cell or range that the defined name refers to.

This method is used to defined a name that can be used to represent a value, a single cell or a
range of cells in a workbook: These defined names can then be used in formulas:

workbook:define_name("Exchange_rate", "=0.96")worksheet:write("B3", "=Exchange_rate")

As in Excel a name defined like this is “global” to the workbook and can be referred to from any
worksheet:

-- Global workbook name.workbook:define_name("Sales", "=Sheet1!G1:H10")
It is also possible to define a local/worksheet name by prefixing it with the sheet name using the
syntax ’sheetname!definedname’:

-- Local worksheet name.workbook:define_name("Sheet2!Sales", "=Sheet2!G1:G10")
If the sheet name contains spaces or special characters you must follow the Excel convention and

26 Chapter 6. The Workbook Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

enclose it in single quotes:

workbook:define_name("'New Data'!Sales", "=Sheet2!G1:G10")
See also Example: Adding Defined Names.

6.7 workbook:worksheets()

worksheets()
Return a sequence of the worksheet objects in the workbook:

Return type A sequence of worksheet objects.

The worksheets() method returns a table/sequence of the worksheets in a workbook suitable
for iteration with ipairs(). This is useful if you want to repeat an operation on each worksheet
in a workbook:

for _, worksheet in ipairs(workbook:worksheets()) doworksheet:write("A1", "Hello")
end

6.7. workbook:worksheets() 27

Creating Excel files with xlsxwriter.lua, Release 0.0.4

28 Chapter 6. The Workbook Class

CHAPTER

SEVEN

THE WORKSHEET CLASS

The worksheet class represents an Excel worksheet. It handles operations such as writing data
to cells or formatting worksheet layout.

A worksheet object isn’t instantiated directly. Instead a new worksheet is created by calling theadd_worksheet() method from a Workbook() object:

workbook = Workbook:new("filename.xlsx")
worksheet1 = workbook:add_worksheet()worksheet2 = workbook:add_worksheet()
worksheet1:write("A1", 123)

7.1 worksheet:write()

write(row, col, args)
Write generic data to a worksheet cell.

Parameters

• row – The cell row (zero indexed).

29

Creating Excel files with xlsxwriter.lua, Release 0.0.4

• col – The cell column (zero indexed).

• args – The additional args that are passed to the sub methods such as
number, string or format.

Excel makes a distinction between data types such as strings, numbers, blanks and formulas. To
simplify the process of writing data using xlsxwriter the write() method acts as a general
alias for several more specific methods:

• write_string()
• write_number()
• write_blank()
• write_formula()
• write_boolean()

The rules for handling data in write() are as follows:

• Variables of Lua type number are written using write_number().

• Empty strings and nil are written using write_blank().

• Variables of Lua type boolean are written using write_boolean().

Strings are then handled as follows:

• Strings that start with "=" are taken to match a formula and are written usingwrite_formula().

• Strings that don’t match any of the above criteria are written using write_string().

Here are some examples:

worksheet:write(0, 0, "Hello") -- write_string()worksheet:write(1, 0, "World") -- write_string()worksheet:write(2, 0, 2) -- write_number()worksheet:write(3, 0, 3.00001) -- write_number()worksheet:write(4, 0, "=SIN(PI()/4)") -- write_formula()worksheet:write(5, 0, "") -- write_blank()worksheet:write(6, 0, nil) -- write_blank()
This creates a worksheet like the following:

30 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

The write() method supports two forms of notation to designate the position of cells: Row-
column notation and A1 notation:

-- These are equivalent.worksheet:write(0, 0, "Hello")worksheet:write("A1", "Hello")
See Working with Cell Notation for more details.

The format parameter in the sub write methods is used to apply formatting to the cell. This
parameter is optional but when present it should be a valid Format object:

format = workbook:add_format({bold = true, italic = true})
worksheet:write(0, 0, "Hello", format) -- Cell is bold and italic.

7.2 worksheet:write_string()

write_string(row, col, string[, format])
Write a string to a worksheet cell.

Parameters

7.2. worksheet:write_string() 31

Creating Excel files with xlsxwriter.lua, Release 0.0.4

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• string – String to write to cell.

• format – Optional Format object.

The write_string() method writes a string to the cell specified by row and column:

worksheet:write_string(0, 0, "Your text here")worksheet:write_string("A2", "or here")
Both row-column and A1 style notation are supported. See Working with Cell Notation for more
details.

The format parameter is used to apply formatting to the cell. This parameter is optional but when
present is should be a valid Format object.

Unicode strings in Excel must be UTF-8 encoded. With xlsxwriter all that is required is that
the source file is UTF-8 encoded and Lua will handle the UTF-8 strings like any other strings:

worksheet:write("A1", "Some UTF-8 text")

There are some sample UTF-8 sample programs in the examples directory of the xlsxwriter
repository.

The maximum string size supported by Excel is 32,767 characters. Strings longer than this will be
ignored by write_string().

Note: Even though Excel allows strings of 32,767 characters it can only display 1000 in a cell.
However, all 32,767 characters are displayed in the formula bar.

32 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.3 worksheet:write_number()

write_number(row, col, number [, format])
Write a number to a worksheet cell.

Parameters

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• number – Number to write to cell.

• format – Optional Format object.

The write_number() method writes Lua number type variable to the cell specified by row andcolumn:

worksheet:write_number(0, 0, 123456)worksheet:write_number("A2", 2.3451)
Like Lua, Excel stores numbers as IEEE-754 64-bit double-precision floating points. This means
that, in most cases, the maximum number of digits that can be stored in Excel without losing
precision is 15.

Both row-column and A1 style notation are supported. See Working with Cell Notation for more
details.

The format parameter is used to apply formatting to the cell. This parameter is optional but when
present is should be a valid Format object.

7.4 worksheet:write_formula()

write_formula(row, col, formula[, format[, value]])
Write a formula to a worksheet cell.

Parameters

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• formula – Formula to write to cell.

• format – Optional Format object.

The write_formula() method writes a formula or function to the cell specified by row andcolumn:

worksheet:write_formula(0, 0, "=B3 + B4")worksheet:write_formula(1, 0, "=SIN(PI()/4)")worksheet:write_formula(2, 0, "=SUM(B1:B5)")worksheet:write_formula("A4", "=IF(A3>1,"Yes", "No")")

7.3. worksheet:write_number() 33

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:write_formula("A5", "=AVERAGE(1, 2, 3, 4)")worksheet:write_formula("A6", "=DATEVALUE("1-Jan-2013")")
Array formulas are also supported:

worksheet:write_formula("A7", "{=SUM(A1:B1*A2:B2)}")
See also the write_array_formula() method below.

Both row-column and A1 style notation are supported. See Working with Cell Notation for more
details.

The format parameter is used to apply formatting to the cell. This parameter is optional but when
present is should be a valid Format object.

Xlsxwriter doesn’t calculate the value of a formula and instead stores the value 0 as the formula
result. It then sets a global flag in the XLSX file to say that all formulas and functions should be
recalculated when the file is opened. This is the method recommended in the Excel documentation
and in general it works fine with spreadsheet applications. However, applications that don’t have
a facility to calculate formulas, such as Excel Viewer, or some mobile applications will only display
the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optionalvalue parameter. This is occasionally necessary when working with non-Excel applications that
don’t calculate the value of the formula. The calculated value is added at the end of the argument
list:

worksheet:write("A1", "=2+2", num_format, 4)
Excel stores formulas in US style formatting regardless of the Locale or Language of the Excel ver-
sion. Therefore all formula names written using xlsxwriter must be in English (use the following
formula translator if necessary). Also, formulas must be written with the US style separator/range
operator which is a comma (not semi-colon). Therefore a formula with multiple values should be
written as follows:

worksheet:write_formula("A1", "=SUM(1, 2, 3)") -- OKworksheet:write_formula("A2", "=SUM(1; 2; 3)") -- NO. Error on load.
Excel 2010 and 2013 added functions which weren’t defined in the original file specification.
These functions are referred to as future functions. Examples of these functions are ACOT,CHISQ.DIST.RT , CONFIDENCE.NORM, STDEV.P, STDEV.S and WORKDAY.INTL. The full list
is given in the MS XLSX extensions documentation on future functions.

When written using write_formula() these functions need to be fully qualified with the _xlfn.
prefix as they are shown in the MS XLSX documentation link above. For example:

worksheet:write_formula("A1", "=_xlfn.STDEV.S(B1:B10)")

34 Chapter 7. The Worksheet Class

http://fr.excel-translator.de
http://msdn.microsoft.com/en-us/library/dd907480%28v=office.12%29.aspx

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.5 worksheet:write_array_formula()

write_array_formula(first_row, first_col, last_row, last_col, formula[, format[, value]
])

Write an array formula to a worksheet cell.

Parameters

• first_row – The first row of the range. (All zero indexed.)

• first_col – The first column of the range.

• last_row – The last row of the range.

• last_col – The last col of the range.

• formula – Array formula to write to cell.

• format – Optional Format object.

The write_array_formula() method write an array formula to a cell range. In Excel an array
formula is a formula that performs a calculation on a set of values. It can return a single value or
a range of values.

An array formula is indicated by a pair of braces around the formula: {=SUM(A1:B1*A2:B2)}.

For array formulas that return a range of values you must specify the range that the return values
will be written to:

worksheet:write_array_formula("A1:A3", "{=TREND(C1:C3,B1:B3)}")worksheet:write_array_formula(0, 0, 2, 0, "{=TREND(C1:C3,B1:B3)}")
If the array formula returns a single value then the first_ and last_ parameters should be the
same:

worksheet:write_array_formula("A1:A1", "{=SUM(B1:C1*B2:C2)}")
It this case however it is easier to just use the write_formula() or write() methods:

-- Same as above but more concise.worksheet:write("A1", "{=SUM(B1:C1*B2:C2)}")worksheet:write_formula("A1", "{=SUM(B1:C1*B2:C2)}")
As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details.

The format parameter is used to apply formatting to the cell. This parameter is optional but when
present is should be a valid Format object.

If required, it is also possible to specify the calculated value of the formula. This is occasionally
necessary when working with non-Excel applications that don’t calculate the value of the formula.
The calculated value is added at the end of the argument list:

worksheet:write_array_formula("A1:A3", "{=TREND(C1:C3,B1:B3)}", format, 105)
See also Example: Array formulas.

7.5. worksheet:write_array_formula() 35

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.6 worksheet:write_blank()

write_blank(row, col, blank[, format])
Write a blank worksheet cell.

Parameters

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• blank – nil or empty string. The value is ignored.

• format – Optional Format object.

Write a blank cell specified by row and column:

worksheet:write_blank(0, 0, nil, format)
This method is used to add formatting to a cell which doesn’t contain a string or number value.

Excel differentiates between an “Empty” cell and a “Blank” cell. An “Empty” cell is a cell which
doesn’t contain data or formatting whilst a “Blank” cell doesn’t contain data but does contain for-
matting. Excel stores “Blank” cells but ignores “Empty” cells.

As such, if you write an empty cell without formatting it is ignored:

worksheet:write(0, 0, nil, format) -- write_blank()worksheet:write(0, 1, nil) -- Ignored
This seemingly uninteresting fact means that you can write tables of data without special treatment
for nil or empty string values.

As shown above, both row-column and A1 style notation are supported. See Working with Cell
Notation for more details.

7.7 worksheet:write_boolean()

write_boolean(row, col, boolean[, format])
Write a boolean value to a worksheet cell.

Parameters

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• boolean – Boolean value to write to cell.

• format – Optional Format object.

The write_boolean() method writes a boolean value to the cell specified by row and column:

36 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:write_boolean(0, 0, true)worksheet:write_boolean("A2", false)
Both row-column and A1 style notation are supported. See Working with Cell Notation for more
details.

The format parameter is used to apply formatting to the cell. This parameter is optional but when
present is should be a valid Format object.

7.8 worksheet:write_date_time()

write_date_time(row, col, date_time[, format])
Write a date or time to a worksheet cell.

Parameters

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• date_time – A os.time() style table of date values.

• format – Optional Format object.

The write_date_time() method can be used to write a date or time in os.time() style format
to the cell specified by row and column:

worksheet:write_date_time(0, 0, date_time, date_format)
The date_time should be a table of values like those used for os.time():

Key Value
year 4 digit year
month 1 - 12
day 1 - 31
hour 0 - 23
min 0 - 59
sec 0 - 59.999

A date/time should have a format of type Format , otherwise it will appear as a number:

date_format = workbook:add_format({num_format = "d mmmm yyyy"})date_time = {year = 2014, month = 3, day = 17}
worksheet:write_date_time("A1", date_time, date_format)

See Working with Dates and Time for more details.

7.8. worksheet:write_date_time() 37

http://www.lua.org/manual/5.2/manual.html#pdf-os.time

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.9 worksheet:write_date_string()

write_date_string(row, col, date_string[, format])
Write a date or time to a worksheet cell.

Parameters

• row – The cell row (zero indexed).

• col – The cell column (zero indexed).

• date_string – A os.time() style table of date values.

• format – Optional Format object.

The write_date_string() method can be used to write a date or time string to the cell speci-
fied by row and column:

worksheet:write_date_string(0, 0, date_string, date_format)
The date_string should be in the following format:

yyyy-mm-ddThh:mm:ss.sss
This conforms to an ISO8601 date but it should be noted that the full range of ISO8601 formats
are not supported.

The following variations on the date_string parameter are permitted:

yyyy-mm-ddThh:mm:ss.sss -- Standard format.yyyy-mm-ddThh:mm:ss.sssZ -- Additional Z (but not time zones).yyyy-mm-dd -- Date only, no time.hh:mm:ss.sss -- Time only, no date.hh:mm:ss -- No fractional seconds.
Note that the T is required for cases with both date and time and seconds are required for all times.

A date/time should have a format of type Format , otherwise it will appear as a number:

date_format = workbook:add_format({num_format = "d mmmm yyyy"})
worksheet:write_date_string("A1", "2014-03-17", date_format)

See Working with Dates and Time for more details.

7.10 worksheet:set_row()

set_row(row, height, format, options)
Set properties for a row of cells.

Parameters

• row – The worksheet row (zero indexed).

38 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

• height – The row height.

• format – Optional Format object.

• options – Optional row parameters: hidden, level, collapsed.

The set_row() method is used to change the default properties of a row. The most common use
for this method is to change the height of a row:

worksheet:set_row(0, 20) -- Set the height of Row 1 to 20.
The other common use for set_row() is to set the Format for all cells in the row:

format = workbook:add_format({bold = true})
worksheet:set_row(0, 20, format)

If you wish to set the format of a row without changing the height you can pass nil as the height
parameter or use the default row height of 15:

worksheet:set_row(1, nil, format)worksheet:set_row(1, 15, format) -- Same as above.
The format parameter will be applied to any cells in the row that don’t have a format. As with
Excel it is overridden by an explicit cell format. For example:

worksheet:set_row(0, nil, format1) -- Row 1 has format1.
worksheet:write("A1", "Hello") -- Cell A1 defaults to format1.worksheet:write("B1", "Hello", format2) -- Cell B1 keeps format2.

The options parameter is a table with the following possible keys:

• "hidden"
• "level"
• "collapsed"

Options can be set as follows:

worksheet:set_row(0, 20, format, {hidden = true})
-- Or use defaults for other properties and set the options only.worksheet:set_row(0, nil, nil, {hidden = true})

The "hidden" option is used to hide a row. This can be used, for example, to hide intermediary
steps in a complicated calculation:

worksheet:set_row(0, nil, nil, {hidden = true})
The "level" parameter is used to set the outline level of the row. Adjacent rows with the same
outline level are grouped together into a single outline.

The following example sets an outline level of 1 for some rows:

7.10. worksheet:set_row() 39

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:set_row(0, nil, nil, {level = 1})worksheet:set_row(1, nil, nil, {level = 1})worksheet:set_row(2, nil, nil, {level = 1})
Excel allows up to 7 outline levels. The "level" parameter should be in the range 0 <= level<= 7.

The "hidden" parameter can also be used to hide collapsed outlined rows when used in con-
junction with the "level" parameter:

worksheet:set_row(1, nil, nil, {hidden = true, level = 1})worksheet:set_row(2, nil, nil, {hidden = true, level = 1})
The "collapsed" parameter is used in collapsed outlines to indicate which row has the collapsed’+’ symbol:

worksheet:set_row(3, nil, nil, {collapsed = true})

7.11 worksheet:set_column()

set_column(first_col, last_col, width, format, options)
Set properties for one or more columns of cells.

Parameters

• first_col – First column (zero-indexed).

• last_col – Last column (zero-indexed). Can be same as firstcol.

• width – The width of the column(s).

• format – Optional Format object.

• options – Optional parameters: hidden, level, collapsed.

The set_column() method can be used to change the default properties of a single column or
a range of columns:

worksheet:set_column(1, 3, 30) -- Width of columns B:D set to 30.
If set_column() is applied to a single column the value of first_col and last_col should
be the same:

worksheet:set_column(1, 1, 30) -- Width of column B set to 30.
It is also possible, and generally clearer, to specify a column range using the form of A1 notation
used for columns. See Working with Cell Notation for more details.

Examples:

worksheet:set_column(0, 0, 20) -- Column A width set to 20.worksheet:set_column(1, 3, 30) -- Columns B-D width set to 30.

40 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:set_column("E:E", 20) -- Column E width set to 20.worksheet:set_column("F:H", 30) -- Columns F-H width set to 30.
The width corresponds to the column width value that is specified in Excel. It is approximately
equal to the length of a string in the default font of Calibri 11. Unfortunately, there is no way to
specify “AutoFit” for a column in the Excel file format. This feature is only available at runtime from
within Excel. It is possible to simulate “AutoFit” by tracking the width of the data in the column as
your write it.

As usual the format Format parameter is optional. If you wish to set the format without changing
the width you can pass nil as the width parameter:

format = workbook:add_format({bold = true})
worksheet:set_column(0, 0, nil, format)

The format parameter will be applied to any cells in the column that don’t have a format. For
example:

worksheet:set_column("A:A", nil, format1) -- Col 1 has format1.
worksheet:write("A1", "Hello") -- Cell A1 defaults to format1.worksheet:write("A2", "Hello", format2) -- Cell A2 keeps format2.

A row format takes precedence over a default column format:

worksheet:set_row(0, nil, format1) -- Set format for row 1.worksheet:set_column("A:A", nil, format2) -- Set format for col 1.
worksheet:write("A1", "Hello") -- Defaults to format1worksheet:write("A2", "Hello") -- Defaults to format2

The options parameters are the same as shown in set_row() above.

7.12 worksheet:get_name()

get_name()
Retrieve the worksheet name.

The get_name() method is used to retrieve the name of a worksheet: This is sometimes useful
for debugging or logging:

print(worksheet:get_name())
There is no set_name() method since the name needs to set when the worksheet object is
created. The only safe way to set the worksheet nameis via the add_worksheet() method.

7.12. worksheet:get_name() 41

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.13 worksheet:activate()

activate()
Make a worksheet the active, i.e., visible worksheet:

The activate() method is used to specify which worksheet is initially visible in a multi-sheet
workbook:

worksheet1 = workbook:add_worksheet()worksheet2 = workbook:add_worksheet()worksheet3 = workbook:add_worksheet()
worksheet3:activate()

More than one worksheet can be selected via the select() method, see below, however only
one worksheet can be active.

The default active worksheet is the first worksheet:

7.14 worksheet:select()

select()
Set a worksheet tab as selected.

The select() method is used to indicate that a worksheet is selected in a multi-sheet workbook:

worksheet1:activate()worksheet2:select()worksheet3:select()
A selected worksheet has its tab highlighted. Selecting worksheets is a way of grouping them
together so that, for example, several worksheets could be printed in one go. A worksheet that
has been activated via the activate() method will also appear as selected.

42 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.15 worksheet:hide()

hide()
Hide the current worksheet:

The hide() method is used to hide a worksheet:

worksheet2:hide()
You may wish to hide a worksheet in order to avoid confusing a user with intermediate data or
calculations.

A hidden worksheet can not be activated or selected so this method is mutually exclusive with theactivate() and select() methods. In addition, since the first worksheet will default to being
the active worksheet, you cannot hide the first worksheet without activating another sheet:

worksheet2:activate()worksheet1:hide()
See Example: Hiding Worksheets for more details.

7.15. worksheet:hide() 43

Creating Excel files with xlsxwriter.lua, Release 0.0.4

7.16 worksheet:set_first_sheet()

set_first_sheet()
Set current worksheet as the first visible sheet tab.

The activate() method determines which worksheet is initially selected. However, if there are
a large number of worksheets the selected worksheet may not appear on the screen. To avoid this
you can select which is the leftmost visible worksheet tab using set_first_sheet():

for i = 1, 20 doworkbook:add_worksheet
end

worksheet19:set_first_sheet() -- First visible worksheet tab.worksheet20:activate() -- First visible worksheet.
This method is not required very often. The default value is the first worksheet:

7.17 worksheet:merge_range()

merge_range(first_row, first_col, last_row, last_col, format)
Merge a range of cells.

Parameters

• first_row – The first row of the range. (All zero indexed.)

• first_col – The first column of the range.

• last_row – The last row of the range.

• last_col – The last col of the range.

• data – Cell data to write.

• format – Optional Format object.

The merge_range() method allows cells to be merged together so that they act as a single area.

Excel generally merges and centers cells at same time. to get similar behaviour with xlsxwriter
you need to apply a Format :

merge_format = workbook:add_format({align = "center"})
worksheet:merge_range("B3:D4", "Merged Cells", merge_format)

It is possible to apply other formatting to the merged cells as well:

merge_format = workbook:add_format({bold = true,border = 6,align = "center",valign = "vcenter",

44 Chapter 7. The Worksheet Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

fg_color = "#D7E4BC",})
worksheet:merge_range("B3:D4", "Merged Cells", merge_format)

See Example: Merging Cells for more details.

The merge_range() method writes its data argument using write(). Therefore it will handle
numbers, strings and formulas as usual. If this doesn’t handle your data correctly then you can
overwrite the first cell with a call to one of the other write_*() methods using the same Format
as in the merged cells.

7.18 worksheet:set_zoom()

set_zoom(zoom)
Set the worksheet zoom factor.

Parameters zoom – Worksheet zoom factor.

Set the worksheet zoom factor in the range 10 <= zoom <= 400:

7.18. worksheet:set_zoom() 45

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet1:set_zoom(50)worksheet2:set_zoom(75)worksheet3:set_zoom(300)worksheet4:set_zoom(400)
The default zoom factor is 100. It isn’t possible to set the zoom to “Selection” because it is calcu-
lated by Excel at run-time.

Note, set_zoom() does not affect the scale of the printed page. For that you should useset_print_scale().

7.19 worksheet:right_to_left()

right_to_left()
Display the worksheet cells from right to left for some versions of Excel.

The right_to_left() method is used to change the default direction of the worksheet from
left-to-right, with the A1 cell in the top left, to right-to-left, with the A1 cell in the top right.

worksheet:right_to_left()

This is useful when creating Arabic, Hebrew or other near or far eastern worksheets that use
right-to-left as the default direction.

7.20 worksheet:hide_zero()

hide_zero()
Hide zero values in worksheet cells.

The hide_zero() method is used to hide any zero values that appear in cells:

worksheet:hide_zero()

7.21 worksheet:set_tab_color()

set_tab_color()
Set the colour of the worksheet tab.

Parameters color – The tab color.

The set_tab_color() method is used to change the colour of the worksheet tab:

worksheet1:set_tab_color("red")worksheet2:set_tab_color("#FF9900") -- Orange
The colour can be a Html style #RRGGBB string or a limited number named colours, see Working
with Colors and Example: Setting Worksheet Tab Colours for more details.

46 Chapter 7. The Worksheet Class

CHAPTER

EIGHT

THE WORKSHEET CLASS (PAGE SETUP)

Page set-up methods affect the way that a worksheet looks when it is printed. They control features
such as paper size, orientation, page headers and margins.

These methods are really just standard worksheet methods. They are documented separately for
the sake of clarity.

8.1 worksheet:set_landscape()

set_landscape()
Set the page orientation as landscape.

This method is used to set the orientation of a worksheet’s printed page to landscape:

worksheet:set_landscape()

8.2 worksheet:set_portrait()

set_portrait()
Set the page orientation as portrait.

This method is used to set the orientation of a worksheet’s printed page to portrait. The default
worksheet orientation is portrait, so you won’t generally need to call this method:

worksheet:set_portrait()

8.3 worksheet:set_page_view()

set_page_view()
Set the page view mode.

This method is used to display the worksheet in “Page View/Layout” mode:

47

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:set_page_view()

8.4 worksheet:set_paper()

set_paper(index)
Set the paper type.

Parameters index – The Excel paper format index.

This method is used to set the paper format for the printed output of a worksheet: The following
paper styles are available:

Index Paper format Paper size
0 Printer default Printer default
1 Letter 8 1/2 x 11 in
2 Letter Small 8 1/2 x 11 in
3 Tabloid 11 x 17 in
4 Ledger 17 x 11 in
5 Legal 8 1/2 x 14 in
6 Statement 5 1/2 x 8 1/2 in
7 Executive 7 1/4 x 10 1/2 in
8 A3 297 x 420 mm
9 A4 210 x 297 mm
10 A4 Small 210 x 297 mm
11 A5 148 x 210 mm
12 B4 250 x 354 mm
13 B5 182 x 257 mm
14 Folio 8 1/2 x 13 in
15 Quarto 215 x 275 mm
16 — 10x14 in
17 — 11x17 in
18 Note 8 1/2 x 11 in
19 Envelope 9 3 7/8 x 8 7/8
20 Envelope 10 4 1/8 x 9 1/2
21 Envelope 11 4 1/2 x 10 3/8
22 Envelope 12 4 3/4 x 11
23 Envelope 14 5 x 11 1/2
24 C size sheet —
25 D size sheet —
26 E size sheet —
27 Envelope DL 110 x 220 mm
28 Envelope C3 324 x 458 mm
29 Envelope C4 229 x 324 mm
30 Envelope C5 162 x 229 mm
31 Envelope C6 114 x 162 mm
32 Envelope C65 114 x 229 mm

Continued on next page

48 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Table 8.1 – continued from previous page
Index Paper format Paper size
33 Envelope B4 250 x 353 mm
34 Envelope B5 176 x 250 mm
35 Envelope B6 176 x 125 mm
36 Envelope 110 x 230 mm
37 Monarch 3.875 x 7.5 in
38 Envelope 3 5/8 x 6 1/2 in
39 Fanfold 14 7/8 x 11 in
40 German Std Fanfold 8 1/2 x 12 in
41 German Legal Fanfold 8 1/2 x 13 in

Note, it is likely that not all of these paper types will be available to the end user since it will depend
on the paper formats that the user’s printer supports. Therefore, it is best to stick to standard paper
types:

worksheet:set_paper(1) -- US Letterworksheet:set_paper(9) -- A4
If you do not specify a paper type the worksheet will print using the printer’s default paper style.

8.5 worksheet:center_horizontally()

center_horizontally()
Center the printed page horizontally.

Center the worksheet data horizontally between the margins on the printed page:

worksheet:center_horizontally()

8.6 worksheet:center_vertically()

center_vertically()
Center the printed page vertically.

Center the worksheet data vertically between the margins on the printed page:

worksheet:center_vertically()

8.7 worksheet:set_margins()

set_margins([left=0.7,] right=0.7,] top=0.75,] bottom=0.75]]])
Set the worksheet margins for the printed page.

Parameters

8.5. worksheet:center_horizontally() 49

Creating Excel files with xlsxwriter.lua, Release 0.0.4

• left – Left margin in inches. Default 0.7.

• right – Right margin in inches. Default 0.7.

• top – Top margin in inches. Default 0.75.

• bottom – Bottom margin in inches. Default 0.75.

The set_margins() method is used to set the margins of the worksheet when it is printed. The
units are in inches. All parameters are optional and have default values corresponding to the
default Excel values.

8.8 worksheet:set_header()

set_header([header=””,] margin=0.3]])
Set the printed page header caption and optional margin.

Parameters

• header – Header string with Excel control characters.

• margin – Header margin in inches. Default 0.3.

Headers and footers are generated using a string which is a combination of plain text and control
characters.

The available control character are:

Control Category Description
&L Justification Left
&C Center
&R Right
&P Information Page number
&N Total number of pages
&D Date
&T Time
&F File name
&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&”font,style” Font name and style
&U Single underline
&E Double underline
&S Strikethrough
&X Superscript
&Y Subscript

Text in headers and footers can be justified (aligned) to the left, center and right by prefixing the
text with the control characters &L, &C and &R.

For example (with ASCII art representation of the results):

50 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:set_header("&LHello")
---| || Hello || |

$worksheet->set_header("&CHello");
---| || Hello || |

$worksheet->set_header("&RHello");
---| || Hello || |

For simple text, if you do not specify any justification the text will be centred. However, you must
prefix the text with &C if you specify a font name or any other formatting:

worksheet:set_header("Hello")
---| || Hello || |

You can have text in each of the justification regions:

worksheet:set_header("&LCiao&CBello&RCielo")
---| || Ciao Bello Cielo || |

The information control characters act as variables that Excel will update as the workbook or
worksheet changes. Times and dates are in the users default format:

worksheet:set_header("&CPage &P of &N")
---| || Page 1 of 6 || |

worksheet:set_header("&CUpdated at &T")

8.8. worksheet:set_header() 51

Creating Excel files with xlsxwriter.lua, Release 0.0.4

---| || Updated at 12:30 PM || |
You can specify the font size of a section of the text by prefixing it with the control character &n
where n is the font size:

worksheet1:set_header("&C&30Hello Big")worksheet2:set_header("&C&10Hello Small")
You can specify the font of a section of the text by prefixing it with the control sequence&"font,style" where fontname is a font name such as “Courier New” or “Times New Ro-
man” and style is one of the standard Windows font descriptions: “Regular”, “Italic”, “Bold” or
“Bold Italic”:

worksheet1:set_header('&C&"Courier New,Italic"Hello')worksheet2:set_header('&C&"Courier New,Bold Italic"Hello')worksheet3:set_header('&C&"Times New Roman,Regular"Hello')
It is possible to combine all of these features together to create sophisticated headers and footers.
As an aid to setting up complicated headers and footers you can record a page set-up as a macro
in Excel and look at the format strings that VBA produces. Remember however that VBA uses
two double quotes "" to indicate a single double quote. For the last example above the equivalent
VBA code looks like this:

.LeftHeader = "".CenterHeader = "&""Times New Roman,Regular""Hello".RightHeader = ""
To include a single literal ampersand & in a header or footer you should use a double ampersand&&:

worksheet1:set_header("&CCuriouser && Curiouser - Attorneys at Law")
As stated above the margin parameter is optional. As with the other margins the value should be
in inches. The default header and footer margin is 0.3 inch. The header and footer margin size
can be set as follows:

worksheet:set_header("&CHello", 0.75)
The header and footer margins are independent of the top and bottom margins.

Note, the header or footer string must be less than 255 characters. Strings longer than this will not
be written and an exception will be thrown.

See also Example: Adding Headers and Footers to Worksheets.

52 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with xlsxwriter.lua, Release 0.0.4

8.9 worksheet:set_footer()

set_footer([footer=””,] margin=0.3]])
Set the printed page footer caption and optional margin.

Parameters

• footer – Footer string with Excel control characters.

• margin – Footer margin in inches. Default 0.3.

The syntax of the set_footer() method is the same as set_header().

8.10 worksheet:repeat_rows()

repeat_rows(first_row[, last_row])
Set the number of rows to repeat at the top of each printed page.

Parameters

• first_row – First row of repeat range.

• last_row – Last row of repeat range. Optional.

For large Excel documents it is often desirable to have the first row or rows of the worksheet print
out at the top of each page.

This can be achieved by using the repeat_rows() method. The parameters first_row andlast_row are zero based. The last_row parameter is optional if you only wish to specify one
row:

worksheet1:repeat_rows(0) -- Repeat the first row.worksheet2:repeat_rows(0, 1) -- Repeat the first two rows.

8.11 worksheet:repeat_columns()

repeat_columns(first_col[, last_col])
Set the columns to repeat at the left hand side of each printed page.

Parameters

• first_col – First column of repeat range.

• last_col – Last column of repeat range. Optional.

For large Excel documents it is often desirable to have the first column or columns of the worksheet
print out at the left hand side of each page.

This can be achieved by using the repeat_columns() method. The parametersfirst_column and last_column are zero based. The last_column parameter is optional

8.9. worksheet:set_footer() 53

Creating Excel files with xlsxwriter.lua, Release 0.0.4

if you only wish to specify one column. You can also specify the columns using A1 column nota-
tion, see Working with Cell Notation for more details.:

worksheet1.repeat_columns(0) -- Repeat the first column.worksheet2.repeat_columns(0, 1) -- Repeat the first two columns.worksheet3.repeat_columns("A:A") -- Repeat the first column.worksheet4.repeat_columns("A:B") -- Repeat the first two columns.

8.12 worksheet:hide_gridlines()

hide_gridlines([option=1])
Set the option to hide gridlines on the screen and the printed page.

Parameters option – Hide gridline options. See below.

This method is used to hide the gridlines on the screen and printed page. Gridlines are the lines
that divide the cells on a worksheet. Screen and printed gridlines are turned on by default in an
Excel worksheet.

If you have defined your own cell borders you may wish to hide the default gridlines:

worksheet:hide_gridlines()
The following values of option are valid:

1. Don’t hide gridlines.

2. Hide printed gridlines only.

3. Hide screen and printed gridlines.

If you don’t supply an argument the default option is 1, i.e. only the printed gridlines are hidden.

8.13 worksheet:print_row_col_headers()

print_row_col_headers()
Set the option to print the row and column headers on the printed page.

When you print a worksheet from Excel you get the data selected in the print area. By default
the Excel row and column headers (the row numbers on the left and the column letters at the top)
aren’t printed.

The print_row_col_headers() method sets the printer option to print these headers:

worksheet:print_row_col_headers()

54 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with xlsxwriter.lua, Release 0.0.4

8.14 worksheet:print_area()

print_area(first_row, first_col, last_row, last_col)
Set the print area in the current worksheet.

Parameters

• first_row – The first row of the range. (All zero indexed.)

• first_col – The first column of the range.

• last_row – The last row of the range.

• last_col – The last col of the range.

This method is used to specify the area of the worksheet that will be printed.

All four parameters must be specified. You can also use A1 notation, see Working with Cell
Notation:

worksheet1.print_area("A1:H20") -- Cells A1 to H20.worksheet2.print_area(0, 0, 19, 7) -- The same as above.worksheet3.print_area("A:H") -- Columns A to H if rows have data.

8.15 worksheet:print_across()

print_across()
Set the order in which pages are printed.

The print_across method is used to change the default print direction. This is referred to by
Excel as the sheet “page order”:

worksheet:print_across()
The default page order is shown below for a worksheet that extends over 4 pages. The order is
called “down then across”:

[1] [3][2] [4]
However, by using the print_across method the print order will be changed to “across then
down”:

[1] [2][3] [4]

8.16 worksheet:fit_to_pages()

fit_to_pages(width, height)
Fit the printed area to a specific number of pages both vertically and horizontally.

8.14. worksheet:print_area() 55

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Parameters

• width – Number of pages horizontally.

• height – Number of pages vertically.

The fit_to_pages() method is used to fit the printed area to a specific number of pages both
vertically and horizontally. If the printed area exceeds the specified number of pages it will be
scaled down to fit. This ensures that the printed area will always appear on the specified number
of pages even if the page size or margins change:

worksheet1.fit_to_pages(1, 1) -- Fit to 1x1 pages.worksheet2.fit_to_pages(2, 1) -- Fit to 2x1 pages.worksheet3.fit_to_pages(1, 2) -- Fit to 1x2 pages.
The print area can be defined using the print_area() method as described above.

A common requirement is to fit the printed output to n pages wide but have the height be as long
as necessary. To achieve this set the height to zero:

worksheet1.fit_to_pages(1, 0) -- 1 page wide and as long as necessary.
Note: Although it is valid to use both fit_to_pages() and set_print_scale() on the same
worksheet Excel only one of these options to be active at a time. The last method call made will
set the active option.

Note: The fit_to_pages() will override any manual page breaks that are defined in the
worksheet.

Note: When using fit_to_pages() it may also be required to set the printer paper size usingset_paper() or else Excel will default to “US Letter”.

8.17 worksheet:set_start_page()

set_start_page()
Set the start page number when printing.

Parameters start_page – Starting page number.

The set_start_page() method is used to set the number of the starting page when the work-
sheet is printed out:

-- Start print from page 2.worksheet:set_start_page(2)

56 Chapter 8. The Worksheet Class (Page Setup)

Creating Excel files with xlsxwriter.lua, Release 0.0.4

8.18 worksheet:set_print_scale()

set_print_scale()
Set the scale factor for the printed page.

Parameters scale – Print scale of worksheet to be printed.

Set the scale factor of the printed page. Scale factors in the range 10 <= $scale <= 400 are
valid:

worksheet1:set_print_scale(50)worksheet2:set_print_scale(75)worksheet3:set_print_scale(300)worksheet4:set_print_scale(400)
The default scale factor is 100. Note, set_print_scale() does not affect the scale of the
visible page in Excel. For that you should use set_zoom().

Note also that although it is valid to use both fit_to_pages() and set_print_scale() on
the same worksheet Excel only allows one of these options to be active at a time. The last method
call made will set the active option.

8.19 worksheet:set_h_pagebreaks()

set_h_pagebreaks(breaks)
Set the horizontal page breaks on a worksheet.

Parameters breaks – Table of page break rows.

The set_h_pagebreaks() method adds horizontal page breaks to a worksheet. A page break
causes all the data that follows it to be printed on the next page. Horizontal page breaks act
between rows.

The set_h_pagebreaks() method takes a table of one or more page breaks:

worksheet1:set_v_pagebreaks({20})worksheet2:set_v_pagebreaks({20, 40, 60, 80, 100})
To create a page break between rows 20 and 21 you must specify the break at row 21. However
in zero index notation this is actually row 20. So you can pretend for a small while that you are
using 1 index notation:

worksheet:set_h_pagebreaks({20}) -- Break between row 20 and 21.
Note: Note: If you specify the “fit to page” option via the fit_to_pages() method it will override
all manual page breaks.

There is a silent limitation of 1023 horizontal page breaks per worksheet in line with an Excel
internal limitation.

8.18. worksheet:set_print_scale() 57

Creating Excel files with xlsxwriter.lua, Release 0.0.4

8.20 worksheet:set_v_pagebreaks()

set_v_pagebreaks(breaks)
Set the vertical page breaks on a worksheet.

Parameters breaks – Table of page break columns.

The set_v_pagebreaks() method is the same as the above set_h_pagebreaks() method
except it adds page breaks between columns.

58 Chapter 8. The Worksheet Class (Page Setup)

CHAPTER

NINE

THE FORMAT CLASS

This section describes the methods and properties that are available for formatting cells in Excel.

The properties of a cell that can be formatted include: fonts, colours, patterns, borders, alignment
and number formatting.

Format objects are created by calling the workbook add_format() method as follows:

format = workbook:add_format()
Format properties can be set by calling any of the methods shown in this section:

format = workbook:add_format()format:set_bold()format:set_font_color("red")
Alternatively the properties can be set by passing a table of properties to the add_format()
constructor:

format = workbook:add_format({bold = true, font_color = "red"})
The documentation below shows the property methods but the information is equally applicable
when using them in the add_format() constructor.

59

Creating Excel files with xlsxwriter.lua, Release 0.0.4

9.1 format:set_font_name()

set_font_name(fontname)
Set the font used in the cell.

Parameters fontname – Cell font.

Specify the font used used in the cell format:

cell_format:set_font_name("Times New Roman")
Excel can only display fonts that are installed on the system that it is running on. Therefore it is
best to use the fonts that come as standard such as “Calibri”, “Times New Roman” and “Courier
New”.

The default font for an unformatted cell in Excel 2007+ is “Calibri”.

9.2 format:set_font_size()

set_font_size(size)
Set the size of the font used in the cell.

60 Chapter 9. The Format Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Parameters size – The cell font size.

Set the font size of the cell format:

format = workbook:add_format()format:set_font_size(30)
Excel adjusts the height of a row to accommodate the largest font size in the row. You can also
explicitly specify the height of a row using the set_row() worksheet method.

9.3 format:set_font_color()

set_font_color(color)
Set the color of the font used in the cell.

Parameters color – The cell font color.

Set the font colour:

format = workbook:add_format()
format:set_font_color("red")
worksheet:write(0, 0, "wheelbarrow", format)

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

Note: The set_font_color() method is used to set the colour of the font in a cell. To set the
colour of a cell use the set_bg_color() and set_pattern() methods.

9.4 format:set_bold()

set_bold()
Turn on bold for the format font.

Set the bold property of the font:

format:set_bold()

9.5 format:set_italic()

set_italic()
Turn on italic for the format font.

Set the italic property of the font:

9.3. format:set_font_color() 61

Creating Excel files with xlsxwriter.lua, Release 0.0.4

format:set_italic()

9.6 format:set_underline()

set_underline()
Turn on underline for the format:

Parameters style – Underline style.

Set the underline property of the format:

format:set_underline()
The available underline styles are:

• 1 = Single underline (the default)

• 2 = Double underline

• 33 = Single accounting underline

• 34 = Double accounting underline

9.7 format:set_font_strikeout()

set_font_strikeout()
Set the strikeout property of the font.

9.8 format:set_font_script()

set_font_script()
Set the superscript/subscript property of the font.

The available options are:

• 1 = Superscript

• 2 = Subscript

9.9 format:set_num_format()

set_num_format(format_string)
Set the number format for a cell.

Parameters format_string – The cell number format:

62 Chapter 9. The Format Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

This method is used to define the numerical format of a number in Excel. It controls whether a
number is displayed as an integer, a floating point number, a date, a currency value or some other
user defined format:

The numerical format of a cell can be specified by using a format string or an index to one of
Excel’s built-in formats:

format1 = workbook:add_format()format2 = workbook:add_format()
format1:set_num_format("d mmm yyyy") -- Format string.format2:set_num_format(0x0F) -- Format index.

Format strings can control any aspect of number formatting allowed by Excel:

format01:set_num_format("0.000")worksheet:write(1, 0, 3.1415926, format01) --> 3.142
format02:set_num_format("#,##0")worksheet:write(2, 0, 1234.56, format02) --> 1,235
format03:set_num_format("#,##0.00")worksheet:write(3, 0, 1234.56, format03) --> 1,234.56
format04:set_num_format("0.00")worksheet:write(4, 0, 49.99, format04) --> 49.99
format05:set_num_format("mm/dd/yy")worksheet:write(5, 0, 36892.521, format05) --> 01/01/01
format06:set_num_format("mmm d yyyy")worksheet:write(6, 0, 36892.521, format06) --> Jan 1 2001
format07:set_num_format("d mmmm yyyy")worksheet:write(7, 0, 36892.521, format07) --> 1 January 2001
format08:set_num_format("dd/mm/yyyy hh:mm AM/PM")worksheet:write(8, 0, 36892.521, format08) --> 01/01/2001 12:30 AM
format09:set_num_format('0 "dollar and" .00 "cents"')worksheet:write(9, 0, 1.87, format09) --> 1 dollar and .87 cents
-- Conditional numerical formatting.format10:set_num_format("[Green]General;[Red]-General;General")worksheet:write(10, 0, 123, format10) -- > 0 Greenworksheet:write(11, 0, -45, format10) -- < 0 Redworksheet:write(12, 0, 0, format10) -- = 0 Default colour
-- Zip code.format11:set_num_format("00000")worksheet:write(13, 0, 1209, format11)

9.9. format:set_num_format() 63

Creating Excel files with xlsxwriter.lua, Release 0.0.4

The number system used for dates is described in Working with Dates and Time.

The colour format should have one of the following values:

[Black] [Blue] [Cyan] [Green] [Magenta] [Red] [White] [Yellow]
For more information refer to the Microsoft documentation on cell formats.

Excel’s built-in formats are shown in the following table:

Index Index Format String
0 0x00 General
1 0x01 0
2 0x02 0.00
3 0x03 #,##0
4 0x04 #,##0.00
5 0x05 ($#,##0_);($#,##0)
6 0x06 ($#,##0_);[Red]($#,##0)
7 0x07 ($#,##0.00_);($#,##0.00)
8 0x08 ($#,##0.00_);[Red]($#,##0.00)
9 0x09 0%
10 0x0a 0.00%
11 0x0b 0.00E+00

Continued on next page

64 Chapter 9. The Format Class

http://office.microsoft.com/en-gb/assistance/HP051995001033.aspx

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Table 9.1 – continued from previous page
Index Index Format String
12 0x0c # ?/?
13 0x0d # ??/??
14 0x0e m/d/yy
15 0x0f d-mmm-yy
16 0x10 d-mmm
17 0x11 mmm-yy
18 0x12 h:mm AM/PM
19 0x13 h:mm:ss AM/PM
20 0x14 h:mm
21 0x15 h:mm:ss
22 0x16 m/d/yy h:mm
...
37 0x25 (#,##0_);(#,##0)
38 0x26 (#,##0_);[Red](#,##0)
39 0x27 (#,##0.00_);(#,##0.00)
40 0x28 (#,##0.00_);[Red](#,##0.00)
41 0x29 _(* #,##0_);_(* (#,##0);_(* "-"_);_(@_)
42 0x2a _($* #,##0_);_($* (#,##0);_($* "-"_);_(@_)
43 0x2b _(* #,##0.00_);_(* (#,##0.00);_(* "-"??_);_(@_)
44 0x2c _($* #,##0.00_);_($* (#,##0.00);_($* "-"??_);_(@_)
45 0x2d mm:ss
46 0x2e [h]:mm:ss
47 0x2f mm:ss.0
48 0x30 ##0.0E+0
49 0x31 @

Note: Numeric formats 23 to 36 are not documented by Microsoft and may differ in international
versions. The listed date and currency formats may also vary depending on system settings.

Note: The dollar sign in the above formats appear as the defined local currency symbol.

9.10 format:set_locked()

set_locked(state)
Set the cell locked state.

Parameters state (bool) – Turn cell locking on or off. Defaults to true.

This property can be used to prevent modification of a cells contents. Following Excel’s convention,
cell locking is turned on by default. However, it only has an effect if the worksheet has been
protected using the worksheet protect() method:

9.10. format:set_locked() 65

http://docs.python.org/2/library/functions.html#bool

Creating Excel files with xlsxwriter.lua, Release 0.0.4

locked = workbook:add_format()locked:set_locked(true)
unlocked = workbook:add_format()locked:set_locked(false)
-- Enable worksheet protectionworksheet:protect()
-- This cell cannot be edited.worksheet:write("A1", "=1+2", locked)
-- This cell can be edited.worksheet:write("A2", "=1+2", unlocked)

9.11 format:set_hidden()

set_hidden()
Hide formulas in a cell.

This property is used to hide a formula while still displaying its result. This is generally used to hide
complex calculations from end users who are only interested in the result. It only has an effect if
the worksheet has been protected using the worksheet protect() method:

hidden = workbook:add_format()hidden:set_hidden()
-- Enable worksheet protectionworksheet:protect()
-- The formula in this cell isn't visibleworksheet:write("A1", "=1+2", hidden)

9.12 format:set_align()

set_align(alignment)
Set the alignment for data in the cell.

Parameters alignment – The vertical and or horizontal alignment direction.

This method is used to set the horizontal and vertical text alignment within a cell. The following
are the available horizontal alignments:

Horizontal alignment
center
right
fill
justify
center_across

66 Chapter 9. The Format Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

The following are the available vertical alignments:

Vertical alignment
top
vcenter
bottom
vjustify

As in Excel, vertical and horizontal alignments can be combined:

format = workbook:add_format()
format:set_align("center")format:set_align("vcenter")
worksheet:set_row(0, 30)worksheet:write(0, 0, "Some Text", format)

Text can be aligned across two or more adjacent cells using the "center_across" property.
However, for genuine merged cells it is better to use the merge_range() worksheet method.

The "vjustify" (vertical justify) option can be used to provide automatic text wrapping in a cell.
The height of the cell will be adjusted to accommodate the wrapped text. To specify where the text
wraps use the set_text_wrap() method.

9.13 format:set_center_across()

set_center_across()
Centre text across adjacent cells.

Text can be aligned across two or more adjacent cells using the set_center_across() method.
This is an alias for the set_align("center_across") method call.

Only one cell should contain the text, the other cells should be blank:

format = workbook:add_format()format:set_center_across()
worksheet:write(1, 1, "Center across selection", format)worksheet:write_blank(1, 2, format)

For actual merged cells it is better to use the merge_range() worksheet method.

9.14 format:set_text_wrap()

set_text_wrap()
Wrap text in a cell.

Turn text wrapping on for text in a cell:

9.13. format:set_center_across() 67

Creating Excel files with xlsxwriter.lua, Release 0.0.4

format = workbook:add_format()format:set_text_wrap()
worksheet:write(0, 0, "Some long text to wrap in a cell", format)

If you wish to control where the text is wrapped you can add newline characters to the string:

format = workbook:add_format()format:set_text_wrap()
worksheet:write(0, 0, "It's\na bum\nwrap", format)

Excel will adjust the height of the row to accommodate the wrapped text. A similar effect can be
obtained without newlines using the set_align("vjustify") method.

9.15 format:set_rotation()

set_rotation(angle)
Set the rotation of the text in a cell.

Parameters angle – Rotation angle in the range -90 to 90 and 270.

Set the rotation of the text in a cell. The rotation can be any angle in the range -90 to 90 degrees:

format = workbook:add_format()format:set_rotation(30)
worksheet:write(0, 0, "This text is rotated", format)

The angle 270 is also supported. This indicates text where the letters run from top to bottom.

9.16 format:set_indent()

set_indent(level)
Set the cell text indentation level.

Parameters level – Indentation level.

This method can be used to indent text in a cell. The argument, which should be an integer, is
taken as the level of indentation:

format1 = workbook:add_format()format2 = workbook:add_format()
format1:set_indent(1)format2:set_indent(2)
worksheet:write("A1", "This text is indented 1 level", format1)worksheet:write("A2", "This text is indented 2 levels", format2)

68 Chapter 9. The Format Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Indentation is a horizontal alignment property. It will override any other horizontal properties but it
can be used in conjunction with vertical properties.

9.17 format:set_shrink()

set_shrink()
Turn on the text “shrink to fit” for a cell.

This method can be used to shrink text so that it fits in a cell:

format = workbook:add_format()format:set_shrink()
worksheet:write(0, 0, "Honey, I shrunk the text!", format)

9.18 format:set_text_justlast()

set_text_justlast()
Turn on the “justify last” text property.

9.17. format:set_shrink() 69

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Only applies to Far Eastern versions of Excel.

9.19 format:set_pattern()

set_pattern(index)
Parameters index – Pattern index. 0 - 18.

Set the background pattern of a cell.

The most common pattern is 1 which is a solid fill of the background color.

9.20 format:set_bg_color()

set_bg_color(color)
Set the color of the background pattern in a cell.

Parameters color – The cell font color.

The set_bg_color() method can be used to set the background colour of a pattern. Patterns
are defined via the set_pattern() method. If a pattern hasn’t been defined then a solid fill
pattern is used as the default.

Here is an example of how to set up a solid fill in a cell:

format = workbook:add_format()
format:set_pattern(1) -- This is optional when using a solid fill.format:set_bg_color("green")
worksheet:write("A1", "Ray", format)

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

70 Chapter 9. The Format Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

9.21 format:set_fg_color()

set_fg_color(color)
Set the color of the foreground pattern in a cell.

Parameters color – The cell font color.

The set_fg_color() method can be used to set the foreground colour of a pattern.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.22 format:set_border()

set_border(style)
Set the cell border style.

Parameters style – Border style index. Default is 1.

Individual border elements can be configured using the following methods with the same parame-
ters:

• set_bottom()
• set_top()
• set_left()
• set_right()

A cell border is comprised of a border on the bottom, top, left and right. These can be set to the
same value using set_border() or individually using the relevant method calls shown above.

The following shows the border styles sorted by Excel index number:

Index Name Weight Style
0 None 0
1 Continuous 1 -----------
2 Continuous 2 -----------
3 Dash 1 - - - - - -
4 Dot 1
5 Continuous 3 -----------
6 Double 3 ===========
7 Continuous 0 -----------
8 Dash 2 - - - - - -
9 Dash Dot 1 - . - . - .
10 Dash Dot 2 - . - . - .
11 Dash Dot Dot 1 - . . - . .
12 Dash Dot Dot 2 - . . - . .
13 SlantDash Dot 2 / - . / - .

The following shows the borders in the order shown in the Excel Dialog:

9.21. format:set_fg_color() 71

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Index Style Index Style
0 None 12 - . . - . .
7 ----------- 13 / - . / - .
4 10 - . - . - .
11 - . . - . . 8 - - - - - -
9 - . - . - . 2 -----------
3 - - - - - - 5 -----------
1 ----------- 6 ===========

9.23 format:set_bottom()

set_bottom(style)
Set the cell bottom border style.

Parameters style – Border style index. Default is 1.

Set the cell bottom border style. See set_border() for details on the border styles.

9.24 format:set_top()

set_top(style)
Set the cell top border style.

Parameters style – Border style index. Default is 1.

Set the cell top border style. See set_border() for details on the border styles.

9.25 format:set_left()

set_left(style)
Set the cell left border style.

Parameters style – Border style index. Default is 1.

Set the cell left border style. See set_border() for details on the border styles.

9.26 format:set_right()

set_right(style)
Set the cell right border style.

Parameters style – Border style index. Default is 1.

Set the cell right border style. See set_border() for details on the border styles.

72 Chapter 9. The Format Class

Creating Excel files with xlsxwriter.lua, Release 0.0.4

9.27 format:set_border_color()

set_border_color(color)
Set the color of the cell border.

Parameters color – The cell border color.

Individual border elements can be configured using the following methods with the same parame-
ters:

• set_bottom_color()
• set_top_color()
• set_left_color()
• set_right_color()

Set the colour of the cell borders. A cell border is comprised of a border on the bottom, top, left
and right. These can be set to the same colour using set_border_color() or individually using
the relevant method calls shown above.

The color can be a Html style #RRGGBB string or a limited number of named colors, see Working
with Colors.

9.28 format:set_bottom_color()

set_bottom_color(color)
Set the color of the bottom cell border.

Parameters color – The cell border color.

See set_border_color() for details on the border colors.

9.29 format:set_top_color()

set_top_color(color)
Set the color of the top cell border.

Parameters color – The cell border color.

See set_border_color() for details on the border colors.

9.30 format:set_left_color()

set_left_color(color)
Set the color of the left cell border.

Parameters color – The cell border color.

9.27. format:set_border_color() 73

Creating Excel files with xlsxwriter.lua, Release 0.0.4

See set_border_color() for details on the border colors.

9.31 format:set_right_color()

set_right_color(color)
Set the color of the right cell border.

Parameters color – The cell border color.

See set_border_color() for details on the border colors.

74 Chapter 9. The Format Class

CHAPTER

TEN

WORKING WITH FORMATS

The methods and properties used to add formatting to a cell are shown in The Format Class. This
section provides some additional information about working with formats.

10.1 Creating and using a Format object

Cell formatting is defined through a Format object . Format objects are created by calling the
workbook add_format() method as follows:

format1 = workbook:add_format() -- Set properties later.format2 = workbook:add_format(props) -- Set properties at creation.
Once a Format object has been constructed and its properties have been set it can be passed as
an argument to the worksheet write methods as follows:

worksheet:write (0, 0, "Foo", format)worksheet:write_string(1, 0, "Bar", format)worksheet:write_number(2, 0, 3, format)worksheet:write_blank (3, 0, "", format)
Formats can also be passed to the worksheet set_row() and set_column() methods to define
the default formatting properties for a row or column:

worksheet:set_row(0, 18, format)worksheet:set_column("A:D", 20, format)

10.2 Format methods and Format properties

The following table shows the Excel format categories, the formatting properties that can be ap-
plied and the equivalent object method:

Category Description Property Method Name
Font Font type font_name set_font_name()

Font size font_size set_font_size()
Font color font_color set_font_color()

Continued on next page

75

Creating Excel files with xlsxwriter.lua, Release 0.0.4

Table 10.1 – continued from previous page
Category Description Property Method Name

Bold bold set_bold()
Italic italic set_italic()
Underline underline set_underline()
Strikeout font_strikeout set_font_strikeout()
Super/Subscript font_script set_font_script()

Number Numeric format num_format set_num_format()
Protection Lock cells locked set_locked()

Hide formulas hidden set_hidden()
Alignment Horizontal align align set_align()

Vertical align valign set_align()
Rotation rotation set_rotation()
Text wrap text_wrap set_text_wrap()
Justify last text_justlast set_text_justlast()
Center across center_across set_center_across()
Indentation indent set_indent()
Shrink to fit shrink set_shrink()

Pattern Cell pattern pattern set_pattern()
Background color bg_color set_bg_color()
Foreground color fg_color set_fg_color()

Border Cell border border set_border()
Bottom border bottom set_bottom()
Top border top set_top()
Left border left set_left()
Right border right set_right()
Border color border_color set_border_color()
Bottom color bottom_color set_bottom_color()
Top color top_color set_top_color()
Left color left_color set_left_color()
Right color right_color set_right_color()

There are two ways of setting Format properties: by using the object interface or by setting the
property as a table of key/value pairs in the constructor. For example, a typical use of the object
interface would be as follows:

format = workbook:add_format()format:set_bold()format:set_font_color("red")
By comparison the properties can be set by passing a table of properties to the add_format()
constructor:

format = workbook:add_format({bold = true, font_color = "red"})
The object method interface is mainly provided for backward compatibility. The key/value interface
has proved to be more flexible in real world programs and is the recommended method for setting
format properties.

76 Chapter 10. Working with Formats

Creating Excel files with xlsxwriter.lua, Release 0.0.4

It is also possible, as with any Lua function that takes a table as its only parameter to use the
following shorthand syntax:

format = workbook:add_format{bold = true, font_color = “red”}

10.3 Format Colors

Format property colors are specified using a Html sytle #RRGGBB value or a imited number of
named colors:

format1:set_font_color("#FF0000")format2:set_font_color("red")
See Working with Colors for more details.

10.4 Format Defaults

The default Excel 2007+ cell format is Calibri 11 with all other properties off.

In general a format method call without an argument will turn a property on, for example:

format = workbook:add_format()
format:set_bold() -- Turns bold on.

10.5 Modifying Formats

Each unique cell format in an xlsxwriter spreadsheet must have a corresponding Format ob-
ject. It isn’t possible to use a Format with a write() method and then redefine it for use at a later
stage. This is because a Format is applied to a cell not in its current state but in its final state.
Consider the following example:

format = workbook:add_format({bold - true, font_color = "red"})worksheet:write("A1", "Cell A1", format)
-- Later...format:set_font_color("green")worksheet:write("B1", "Cell B1", format)

Cell A1 is assigned a format which is initially has the font set to the colour red. However, the
colour is subsequently set to green. When Excel displays Cell A1 it will display the final state of
the Format which in this case will be the colour green.

10.3. Format Colors 77

Creating Excel files with xlsxwriter.lua, Release 0.0.4

78 Chapter 10. Working with Formats

CHAPTER

ELEVEN

WORKING WITH CELL NOTATION

Xlsxwriter.lua supports two forms of notation to designate the position of cells: Row-column no-
tation and A1 notation.

Row-column notation uses a zero based index for both row and column while A1 notation uses the
standard Excel alphanumeric sequence of column letter and 1-based row. For example:

(0, 0) -- Row-column notation.("A1") -- The same cell in A1 notation.
(6, 2) -- Row-column notation.("C7") -- The same cell in A1 notation.

Row-column notation is useful if you are referring to cells programmatically:

for row = 0, 5 doworksheet:write(row, 0, "Hello")
end

A1 notation is useful for setting up a worksheet manually and for working with formulas:

worksheet:write("H1", 200)worksheet:write("H2", "=H1+1")
In general when using the xlsxwriter module you can use A1 notation anywhere you can use
row-column notation.

Note: In Excel it is also possible to use R1C1 notation. This is not supported by xlsxwriter.

11.1 Relative and Absolute cell references

When dealing with Excel cell references it is important to distinguish between relative and absolute
cell references in Excel.

Relative cell references change when they are copied while Absolute references maintain fixed
row and/or column references. In Excel absolute references are prefixed by the dollar symbol as
shown below:

79

Creating Excel files with xlsxwriter.lua, Release 0.0.4

A1 -- Column and row are relative.$A1 -- Column is absolute and row is relative.A$1 -- Column is relative and row is absolute.A1 -- Column and row are absolute.
See the Microsoft Office documentation for more information on relative and absolute references.

80 Chapter 11. Working with Cell Notation

http://office.microsoft.com/en-001/excel-help/switch-between-relative-absolute-and-mixed-references-HP010342940.aspx

CHAPTER

TWELVE

CELL UTILITY FUNCTIONS

The xlsxwriter.utility module contains several helper functions for dealing with A1 nota-
tion. These functions can be imported and used as follows:

local Utility = require "xlsxwriter.utility"
cell = Utilty.rowcol_to_cell(1, 2) --> C2

The available functions are shown below.

12.1 rowcol_to_cell()

rowcol_to_cell(row, col)
Convert a zero indexed row and column cell reference to a A1 style string.

Parameters

• row – The cell row.

• col – The cell column.

Return type A1 style string.

The rowcol_to_cell() function converts a zero indexed row and column cell values to an A1
style string:

cell = Utilty.rowcol_to_cell(0, 0) --> A1cell = Utilty.rowcol_to_cell(0, 1) --> B1cell = Utilty.rowcol_to_cell(1, 0) --> A2

12.2 rowcol_to_cell_abs()

rowcol_to_cell_abs(row, col[, row_abs, col_abs])
Convert a zero indexed row and column cell reference to a A1 style string.

Parameters

• row – The cell row.

81

Creating Excel files with xlsxwriter.lua, Release 0.0.4

• col – The cell column.

• row_abs – Optional flag to make the row absolute.

• col_abs – Optional flag to make the column absolute.

Return type A1 style string.

The rowcol_to_cell_abs() function is like the rowcol_to_cell_abs() function but the
optional parameters row_abs and col_abs can be used to indicate that the row or column is
absolute:

str = Utilty.rowcol_to_cell_abs(0, 0, false, true) --> $A1str = Utilty.rowcol_to_cell_abs(0, 0, true) --> A$1str = Utilty.rowcol_to_cell_abs(0, 0, true, true) --> A1

12.3 cell_to_rowcol()

cell_to_rowcol(cell_str)
Convert a cell reference in A1 notation to a zero indexed row and column.

Parameters cell_str – A1 style string, absolute or relative.

Return type row, col.

The cell_to_rowcol() function converts an Excel cell reference in A1 notation to a zero based
row and column. The function will also handle Excel”s absolute cell notation:

row, col = Utilty.cell_to_rowcol("A1") --> (0, 0)row, col = Utilty.cell_to_rowcol("B1") --> (0, 1)row, col = Utilty.cell_to_rowcol("C2") --> (1, 2)row, col = Utilty.cell_to_rowcol("$C2") --> (1, 2)row, col = Utilty.cell_to_rowcol("C$2") --> (1, 2)row, col = Utilty.cell_to_rowcol("C2") --> (1, 2)

12.4 col_to_name()

col_to_name(col[, col_abs])
Convert a zero indexed column cell reference to a string.

Parameters

• col – The cell column.

• col_abs – Optional flag to make the column absolute.

Return type Column style string.

The col_to_name() converts a zero based column reference to a string:

82 Chapter 12. Cell Utility Functions

Creating Excel files with xlsxwriter.lua, Release 0.0.4

column = Utilty.col_to_name(0) --> Acolumn = Utilty.col_to_name(1) --> Bcolumn = Utilty.col_to_name(702) --> AAA
The optional parameter col_abs can be used to indicate if the column is absolute:

column = Utilty.col_to_name(0, false) --> Acolumn = Utilty.col_to_name(0, true) --> $Acolumn = Utilty.col_to_name(1, true) --> $B

12.5 range()

range(first_row, first_col, last_row, last_col)
Converts zero indexed row and column cell references to a A1:B1 range string.

Parameters

• first_row – The first cell row.

• first_col – The first cell column.

• last_row – The last cell row.

• last_col – The last cell column.

Return type A1:B1 style range string.

The range() function converts zero based row and column cell references to an A1:B1 style
range string:

cell_range = Utilty.range(0, 0, 9, 0) --> A1:A10cell_range = Utilty.range(1, 2, 8, 2) --> C2:C9cell_range = Utilty.range(0, 0, 3, 4) --> A1:E4

12.6 range_abs()

The range_abs() function converts zero based row and column cell references to an absoluteA1:B1 style range string:

cell_range = Utilty.range_abs(0, 0, 9, 0) --> A1:A10cell_range = Utilty.range_abs(1, 2, 8, 2) --> C2:C9cell_range = Utilty.range_abs(0, 0, 3, 4) --> A1:E4

12.5. range() 83

Creating Excel files with xlsxwriter.lua, Release 0.0.4

84 Chapter 12. Cell Utility Functions

CHAPTER

THIRTEEN

WORKING WITH DATES AND TIME

Dates and times in Excel are represented by real numbers. For example a date that is displayed
in Excel as “Jan 1 2013 12:00 PM” is stored as the number 41275.5.

The integer part of the number stores the number of days since the epoch, which is generally
1900, and the fractional part stores the percentage of the day.

A date or time in Excel is just like any other number. To display the number as a date you must
apply an Excel number format to it. Here are some examples:

local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("date_examples.xlsx")
local worksheet = workbook:add_worksheet()
-- Widen the first column or extra visibility.worksheet:set_column("A:A", 30)
-- A number to convert to a date.
local number = 41333.5
-- Write it as a number without formatting.worksheet:write("A1", number) --> 41333.5
local format2 = workbook:add_format({num_format = "dd/mm/yy"})worksheet:write("A2", number, format2) --> 28/02/13
local format3 = workbook:add_format({num_format = "mm/dd/yy"})worksheet:write("A3", number, format3) --> 02/28/13
local format4 = workbook:add_format({num_format = "d-m-yyyy"})worksheet:write("A4", number, format4) --> 28-2-2013
local format5 = workbook:add_format({num_format = "dd/mm/yy hh:mm"})worksheet:write("A5", number, format5) --> 28/02/13 12:00
local format6 = workbook:add_format({num_format = "d mmm yyyy"})worksheet:write("A6", number, format6) --> 28 Feb 2013
local format7 = workbook:add_format({num_format = "mmm d yyyy hh:mm AM/PM"})worksheet:write("A7", number, format7) --> Feb 28 2008 12:00 PM

85

Creating Excel files with xlsxwriter.lua, Release 0.0.4

workbook:close()

To make working with dates and times a little easier the xlsxwriter module provides two date
handling methods: write_date_time() and write_date_string().

The write_date_time() method takes a table of values like those used for os.time()

date_format = workbook:add_format({num_format = "d mmmm yyyy"})
worksheet:write_date_time("A1", {year = 2014, month = 3, day = 17}, date_format)

The allowable table keys and values are:

Key Value
year 4 digit year
month 1 - 12
day 1 - 31
hour 0 - 23
min 0 - 59
sec 0 - 59.999

The write_date_string() method takes a string in an ISO8601 format:

86 Chapter 13. Working with Dates and Time

http://www.lua.org/manual/5.2/manual.html#pdf-os.time

Creating Excel files with xlsxwriter.lua, Release 0.0.4

yyyy-mm-ddThh:mm:ss.sss
This conforms to an ISO8601 date but it should be noted that the full range of ISO8601 formats
are not supported. The following variations are permitted:

yyyy-mm-ddThh:mm:ss.sss -- Standard format.yyyy-mm-ddThh:mm:ss.sssZ -- Additional Z (but not time zones).yyyy-mm-dd -- Date only, no time.hh:mm:ss.sss -- Time only, no date.hh:mm:ss -- No fractional seconds.
Note that the T is required for cases with both date, and time and seconds are required for all
times.

Here is an example using write_date_string():

date_format = workbook:add_format({num_format = "d mmmm yyyy"})
worksheet:write_date_string("A1", "2014-03-17", date_format)

Here is a longer example that displays the same date in a several different formats:

local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("datetimes.xlsx")
local worksheet = workbook:add_worksheet()
local bold = workbook:add_format({bold = true})
-- Expand the first columns so that the date is visible.worksheet:set_column("A:B", 30)
-- Write the column headers.worksheet:write("A1", "Formatted date", bold)worksheet:write("B1", "Format", bold)
-- Create an ISO8601 style date string to use in the examples.
local date_string = "2013-01-23T12:30:05.123"
-- Examples date and time formats. In the output file compare how changing-- the format codes change the appearance of the date.
local date_formats = {"dd/mm/yy","mm/dd/yy","dd m yy","d mm yy","d mmm yy","d mmmm yy","d mmmm yyy","d mmmm yyyy","dd/mm/yy hh:mm","dd/mm/yy hh:mm:ss","dd/mm/yy hh:mm:ss.000","hh:mm","hh:mm:ss",

87

Creating Excel files with xlsxwriter.lua, Release 0.0.4

"hh:mm:ss.000",}
-- Write the same date and time using each of the above formats.
for row, date_format_str in ipairs(date_formats) do

-- Create a format for the date or time.
local date_format = workbook:add_format({num_format = date_format_str,align = "left"})
-- Write the same date using different formats.worksheet:write_date_string(row, 0, date_string, date_format)
-- Also write the format string for comparison.worksheet:write_string(row, 1, date_format_str)

end

workbook:close()

88 Chapter 13. Working with Dates and Time

CHAPTER

FOURTEEN

WORKING WITH COLORS

Throughout xlsxwriter colors are specified using a Html sytle #RRGGBB value. For example
with a Format object:

format:set_font_color('#FF0000')
For convenience a limited number of color names are supported:

format:set_font_color('red')
The color names and corresponding #RRGGBB value are shown below:

Color name RGB color code
black #000000
blue #0000FF
brown #800000
cyan #00FFFF
gray #808080
green #008000
lime #00FF00
magenta #FF00FF
navy #000080
orange #FF6600
pink #FF00FF
purple #800080
red #FF0000
silver #C0C0C0
white #FFFFFF
yellow #FFFF00

89

Creating Excel files with xlsxwriter.lua, Release 0.0.4

90 Chapter 14. Working with Colors

CHAPTER

FIFTEEN

WORKING WITH MEMORY AND PERFORMANCE

By default xlsxwriter holds all cell data in memory. This is to allow future features where
formatting is applied separately from the data.

The effect of this is that for large files xlsxwriter can consume a lot of memory and it is even
possible to run out of memory.

Fortunately, this memory usage can be reduced almost completely by setting the Workbook:new()’constant_memory’ property:

workbook = Workbook:new(filename, {constant_memory = true})
The optimisation works by flushing each row after a subsequent row is written. In this way the
largest amount of data held in memory for a worksheet is the amount of memory required to hold
a single row of data.

Since each new row flushes the previous row, data must be written in sequential row order when’constant_memory’ mode is on:

-- With 'constant_memory' you must write data in row column order.
for row = 0, row_max do

for col = 0, col_max doworksheet:write(row, col, some_data)
end

end

-- With 'constant_memory' the following would only write the first column.
for col = 0, col_max do -- !!

for row = 0, row_max doworksheet:write(row, col, some_data)
end

end

Another optimisation that is used to reduce memory usage is that cell strings aren’t stored in
an Excel structure call “shared strings” and instead are written “in-line”. This is a documented
Excel feature that is supported by most spreadsheet applications. One known exception is Apple
Numbers for Mac where the string data isn’t displayed.

The trade-off when using ’constant_memory’ mode is that you won’t be able to take advantage
of any features that manipulate cell data after it is written. Currently there aren’t any such features.

For larger files ’constant_memory’ mode also gives an increase in execution speed, see below.

91

Creating Excel files with xlsxwriter.lua, Release 0.0.4

15.1 Performance Figures

The performance figures below show execution time and memory usage for worksheets of size N
rows x 50 columns with a 50/50 mixture of strings and numbers. The figures are taken from an
arbitrary, mid-range, machine. Specific figures will vary from machine to machine but the trends
should be the same.

Xlsxwriter in normal operation mode: the execution time and memory usage increase more of less
linearly with the number of rows:

Rows Columns Time (s) Memory (bytes)
200 50 0.20 2071819
400 50 0.40 4149803
800 50 0.86 8305771
1600 50 1.87 16617707
3200 50 3.84 33271579
6400 50 8.02 66599323
12800 50 16.54 133254811

Xlsxwriter in constant_memory mode: the execution time still increases linearly with the number
of rows but the memory usage remains small and mainly constant:

Rows Columns Time (s) Memory (bytes)
200 50 0.18 41119
400 50 0.36 24735
800 50 0.69 24735
1600 50 1.41 24735
3200 50 2.83 41119
6400 50 5.83 41119
12800 50 11.29 24735

These figures were generated using the perf_tester.lua program in the examples directory
of the xlsxwriter repo.

Note, there will be further optimisation in both modes in later releases.

92 Chapter 15. Working with Memory and Performance

CHAPTER

SIXTEEN

EXAMPLES

The following are some of the examples included in the examples directory of the xlsxwriter
distribution.

16.1 Example: Hello World

The simplest possible spreadsheet. This is a good place to start to see if the xlsxwriter module
is installed correctly.

93

https://github.com/jmcnamara/xlsxwriter.lua/tree/master/examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-------- A hello world spreadsheet using the xlsxwriter.lua module.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("hello_world.xlsx")
local worksheet = workbook:add_worksheet()
worksheet:write("A1", "Hello world")
workbook:close()

16.2 Example: Simple Feature Demonstration

This program is an example of writing some of the features of the xlsxwriter module.

94 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-- A simple example of some of the features of the xlsxwriter.lua module.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("demo.xlsx")
local worksheet = workbook:add_worksheet()
-- Widen the first column to make the text clearer.worksheet:set_column("A:A", 20)
-- Add a bold format to use to highlight cells.
local bold = workbook:add_format({bold = true})
-- Write some simple text.worksheet:write("A1", "Hello")
-- Text with formatting.worksheet:write("A2", "World", bold)
-- Write some numbers, with row/column notation.worksheet:write(2, 0, 123)worksheet:write(3, 0, 123.456)
workbook:close()

Notes:

• This example includes the use of cell formatting via the The Format Class.

• Strings and numbers can be written with the same worksheet write() method.

• Data can be written to cells using Row-Column notation or ‘A1’ style notation, see Working
with Cell Notation.

16.3 Example: Array formulas

This program is an example of writing array formulas with one or more return values. See thewrite_array_formula() method for more details.

16.3. Example: Array formulas 95

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-------- Example of how to use the xlsxwriter.lua module to write-- simple array formulas.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
-- Create a new workbook and add a worksheet
local workbook = Workbook:new("array_formula.xlsx")
local worksheet = workbook:add_worksheet()
-- Write some test data.worksheet:write("B1", 500)worksheet:write("B2", 10)worksheet:write("B5", 1)worksheet:write("B6", 2)worksheet:write("B7", 3)worksheet:write("C1", 300)worksheet:write("C2", 15)worksheet:write("C5", 20234)worksheet:write("C6", 21003)worksheet:write("C7", 10000)

96 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-- Write an array formula that returns a single valueworksheet:write_formula("A1", "{=SUM(B1:C1*B2:C2)}")
-- Same as above but more explicit.worksheet:write_array_formula("A2:A2", "{=SUM(B1:C1*B2:C2)}")
-- Write an array formula that returns a range of valuesworksheet:write_array_formula("A5:A7", "{=TREND(C5:C7,B5:B7)}")
workbook:close()

16.4 Example: Merging Cells

This program is an example of merging cells in a worksheet. See the merge_range() method
for more details.

-------- A simple example of merging cells with the xlsxwriter Lua module.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
16.4. Example: Merging Cells 97

Creating Excel files with xlsxwriter.lua, Release 0.0.4

local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("merge1.xlsx")
local worksheet = workbook:add_worksheet()
-- Increase the cell size of the merged cells to highlight the formatting.worksheet:set_column("B:D", 12)worksheet:set_row(3, 30)worksheet:set_row(6, 30)worksheet:set_row(7, 30)
-- Create a format to use in the merged range.merge_format = workbook:add_format({bold = true,border = 1,align = "center",valign = "vcenter",fg_color = "yellow"})
-- Merge 3 cells.worksheet:merge_range("B4:D4", "Merged Range", merge_format)
-- Merge 3 cells over two rows.worksheet:merge_range("B7:D8", "Merged Range", merge_format)
workbook:close()

16.5 Example: Adding Defined Names

Example of how to addiing defined names to a workbook.

This method is used to define a user friendly name to represent a value, a single cell or a range of
cells in a workbook. These can then be used in formulas or anywhere a range is used.

98 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-------- Example of how to create defined names with the xlsxwriter.lua module.---- This method is used to define a user friendly name to represent a value,-- a single cell or a range of cells in a workbook.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("defined_name.xlsx")
local worksheet1 = workbook:add_worksheet()
local worksheet2 = workbook:add_worksheet()
-- Define some global/workbook names.workbook:define_name("Exchange_rate", "=0.96")workbook:define_name("Sales", "=Sheet1!G1:H10")
-- Define a local/worksheet name. Over-rides the "Sales" name above.workbook:define_name("Sheet2!Sales", "=Sheet2!G1:G10")
-- Write some text in the file and one of the defined names in a formula.
for _, worksheet in ipairs(workbook:worksheets()) do

16.5. Example: Adding Defined Names 99

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet:set_column("A:A", 45)
worksheet:write("A1", "This worksheet contains some defined names.")worksheet:write("A2", "See Formulas -> Name Manager above.")worksheet:write("A3", "Example formula in cell B3 ->")
worksheet:write("B3", "=Exchange_rate")

end

workbook:close()

16.6 Example: Write UTF-8 Strings

An example of writing simple UTF-8 strings to a worksheet.

Unicode strings in Excel must be UTF-8 encoded. With xlsxwriter all that is required is that
the source file is UTF-8 encoded and Lua will handle the UTF-8 strings like any other strings:

100 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

16.7 Example: Convert a UTF-8 file to a Worksheet

This program is an example of reading in data from a UTF-8 encoded text file and converting it to
a worksheet.

-------- A simple example of converting some Unicode text to an Excel file using-- the xlsxwriter.lua module.---- This example generates a spreadsheet with some Polish text from a file-- with UTF-8 encoded text.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("utf8_polish.xlsx")
local worksheet = workbook:add_worksheet()
-- Widen the first column to make the text clearer.worksheet:set_column("A:A", 50)

16.7. Example: Convert a UTF-8 file to a Worksheet 101

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-- Open a source of UTF-8 data.
local file = assert(io.open("utf8_polish.txt", "r"))
-- Read the text file and write it to the worksheet.
local line = file:read("*l")
local row = 0
while line do-- Ignore comments in the text file.

if not string.match(line, "^#") thenworksheet:write(row, 0, line)row = row + 1
endline = file:read("*l")

end

workbook:close()

16.8 Example: Setting Document Properties

This program is an example setting document properties. See the set_properties() workbook
method for more details.

102 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-------- An example of adding document properites to a xlsxwriter.lua file.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("doc_properties.xlsx")
local worksheet = workbook:add_worksheet()
workbook:set_properties({title = "This is an example spreadsheet",

16.8. Example: Setting Document Properties 103

Creating Excel files with xlsxwriter.lua, Release 0.0.4

subject = "With document properties",author = "Someone",manager = "Dr. Heinz Doofenshmirtz",company = "of Wolves",category = "Example spreadsheets",keywords = "Sample, Example, Properties",comments = "Created with Lua and the xlsxwriter module",status = "Quo",})
worksheet:set_column("A:A", 70)worksheet:write("A1", "Select 'Workbook Properties' to see properties.")
workbook:close()

16.9 Example: Setting Worksheet Tab Colours

This program is an example of setting worksheet tab colours. See the set_tab_color() method
for more details.

104 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-------- Example of how to set Excel worksheet tab colours using-- the Xlsxwriter.lua module.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("tab_colors.xlsx")
-- Set up some worksheets.
local worksheet1 = workbook:add_worksheet()
local worksheet2 = workbook:add_worksheet()
local worksheet3 = workbook:add_worksheet()
local worksheet4 = workbook:add_worksheet()
-- Set tab colours, worksheet4 will have the default colour.worksheet1:set_tab_color("red")worksheet2:set_tab_color("green")worksheet3:set_tab_color("#FF9900")
workbook:close()

16.10 Example: Hiding Worksheets

This program is an example of how to hide a worksheet using the hide() method.

16.10. Example: Hiding Worksheets 105

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-------- Example of how to hide a worksheet with xlsxwriter.lua.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("hide_sheet.xlsx")
local worksheet1 = workbook:add_worksheet()
local worksheet2 = workbook:add_worksheet()
local worksheet3 = workbook:add_worksheet()
worksheet1:set_column("A:A", 30)worksheet2:set_column("A:A", 30)worksheet3:set_column("A:A", 30)
-- Hide Sheet2. It won't be visible until it is unhidden in Excel.worksheet2:hide()
worksheet1:write("A1", "Sheet2 is hidden")worksheet2:write("A1", "Now it's my turn to find you!")worksheet3:write("A1", "Sheet2 is hidden")

106 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

workbook:close()

16.11 Example: Adding Headers and Footers to Worksheets

This program is an example of adding headers and footers to worksheets. See theset_header() and set_footer() methods for more details.

-------- This program shows several examples of how to set up headers and-- footers with xlsxwriter.---- The control characters used in the header/footer strings are:---- Control Category Description-- ======= ======== ===========-- &L Justification Left
16.11. Example: Adding Headers and Footers to Worksheets 107

Creating Excel files with xlsxwriter.lua, Release 0.0.4

-- &C Center-- &R Right---- &P Information Page number-- &N Total number of pages-- &D Date-- &T Time-- &F File name-- &A Worksheet name---- &fontsize Font Font size-- &"font,style" Font name and style-- &U Single underline-- &E Double underline-- &S Strikethrough-- &X Superscript-- &Y Subscript---- && Miscellaneous Literal ampersand &---- See the main XlsxWriter documentation for more information.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("headers_footers.xlsx")
-------- A simple example to start--
local worksheet1 = workbook:add_worksheet("Simple")
local header1 = "&CHere is some centred text."
local footer1 = "&LHere is some left aligned text."
worksheet1:set_header(header1)worksheet1:set_footer(footer1)worksheet1:set_page_view()
worksheet1:set_column("A:A", 50)worksheet1:write("A1", "Headers and footers added.")
-------- This is an example of some of the header/footer variables.--
local worksheet2 = workbook:add_worksheet("Variables")
local header2 = "&LPage &P of &N" .. "&CFilename: &F" .. "&RSheetname: &A"
local footer2 = "&LCurrent date: &D" .. "&RCurrent time: &T"
worksheet2:set_header(header2)

108 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

worksheet2:set_footer(footer2)worksheet2:set_page_view()
worksheet2:set_column("A:A", 50)worksheet2:write("A1", "Headers and footers with variable parameters.")worksheet2:write("A20", "Page break inserted here.")worksheet2:write("A21", "Next sheet")worksheet2:set_h_pagebreaks({20})
-------- This example shows how to use more than one font--
local worksheet3 = workbook:add_worksheet("Mixed fonts")
local header3 = '&C&"Courier New,Bold"Hello &"Arial,Italic"World'
local footer3 = '&C&"Symbol"e&"Arial" = mc&X2'
worksheet3:set_header(header3)worksheet3:set_footer(footer3)worksheet3:set_page_view()
worksheet3:set_column("A:A", 50)worksheet3:write("A1", "Headers and footers with mixed fonts.")
-------- Example of line wrapping--
local worksheet4 = workbook:add_worksheet("Word wrap")
local header4 = "&CHeading 1\nHeading 2"
worksheet4:set_header(header4)worksheet4:set_page_view()
worksheet4:set_column("A:A", 50)worksheet4:write("A1", "Header with wrapped text.")
-------- Example of inserting a literal ampersand &--
local worksheet5 = workbook:add_worksheet("Ampersand")
local header5 = "&CCuriouser && Curiouser - Attorneys at Law"
worksheet5:set_header(header5)worksheet5:set_page_view()
worksheet5:set_column("A:A", 50)worksheet5:write("A1", "Header with an ampersand.")
workbook:close()

16.11. Example: Adding Headers and Footers to Worksheets 109

Creating Excel files with xlsxwriter.lua, Release 0.0.4

16.12 Example: Indenting Text in a Cell

This program is an example indenting text in a cell.

-------- An example of indenting text in a cell using the xlsxwriter.lua module.---- Copyright 2014, John McNamara, jmcnamara@cpan.org--
local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("text_indent.xlsx")
local worksheet = workbook:add_worksheet()
local indent1 = workbook:add_format({indent = 1})
local indent2 = workbook:add_format({indent = 2})
worksheet:set_column("A:A", 40)
worksheet:write("A1", "This text is indented 1 level", indent1)worksheet:write("A2", "This text is indented 2 levels", indent2)

110 Chapter 16. Examples

Creating Excel files with xlsxwriter.lua, Release 0.0.4

workbook:close()

16.12. Example: Indenting Text in a Cell 111

Creating Excel files with xlsxwriter.lua, Release 0.0.4

112 Chapter 16. Examples

CHAPTER

SEVENTEEN

KNOWN ISSUES AND BUGS

This section lists known issues and bugs and gives some information on how to submit bug reports.

17.1 Content is Unreadable. Open and Repair

Very, very occasionally you may see an Excel warning when opening an xlsxwriter file like:

Excel could not open file.xlsx because some content is unreadable. Do you want to
open and repair this workbook.

This ominous sounding message is Excel’s default warning for any validation error in the XML
used for the components of the XLSX file.

If you encounter an issue like this you should open an issue on GitHub with a program to replicate
the issue (see below) or send one of the failing output files to the Author .

17.2 Formulas displayed as #NAME? until edited

Excel 2010 and 2013 added functions which weren’t defined in the original file specification.
These functions are referred to as future functions. Examples of these functions are ACOT,CHISQ.DIST.RT , CONFIDENCE.NORM, STDEV.P, STDEV.S and WORKDAY.INTL. The full list
is given in the MS XLSX extensions documentation on future functions.

When written using write_formula() these functions need to be fully qualified with the _xlfn.
prefix as they are shown in the MS XLSX documentation link above. For example:

worksheet:write_formula('A1', '=_xlfn.STDEV.S(B1:B10)')

17.3 Formula results displaying as zero in non-Excel applications

Due to wide range of possible formulas and interdependencies between them, xlsxwriter
doesn’t, and realistically cannot, calculate the result of a formula when it is written to an XLSX
file. Instead, it stores the value 0 as the formula result. It then sets a global flag in the XLSX file to
say that all formulas and functions should be recalculated when the file is opened.

113

http://msdn.microsoft.com/en-us/library/dd907480%28v=office.12%29.aspx

Creating Excel files with xlsxwriter.lua, Release 0.0.4

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas,
such as Excel Viewer, or several mobile applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optionalvalue parameter in write_formula():

worksheet:write_formula('A1', '=2+2', num_format, 4)

17.4 Strings aren’t displayed in Apple Numbers in ‘con-
stant_memory’ mode

In Workbook() ’constant_memory’ mode xlsxwriter uses an optimisation where cell
strings aren’t stored in an Excel structure call “shared strings” and instead are written “in-line”.

This is a documented Excel feature that is supported by most spreadsheet applications. One
known exception is Apple Numbers for Mac where the string data isn’t displayed.

17.5 Images not displayed correctly in Excel 2001 for Mac and non-
Excel applications

Images inserted into worksheets via insert_image() may not display correctly in Excel 2011
for Mac and non-Excel applications such as OpenOffice and LibreOffice. Specifically the images
may looked stretched or squashed.

This is not specifically an xlsxwriter issue. It also occurs with files created in Excel 2007 and
Excel 2010.

114 Chapter 17. Known Issues and Bugs

CHAPTER

EIGHTEEN

REPORTING BUGS

Here are some tips on reporting bugs in xlsxwriter.

18.1 Upgrade to the latest version of the module

The bug you are reporting may already be fixed in the latest version of the module. You can check
which version of xlsxwriter that you are using as follows:

lua -e 'W = require "xlsxwriter.workbook"; print(W.version)'
Check the Changes in XlsxWriter section to see what has changed in the latest versions.

18.2 Read the documentation

Read or search the xlsxwriter documentation to see if the issue you are encountering is al-
ready explained.

18.3 Look at the example programs

There are many Examples in the distribution. Try to identify an example program that corresponds
to your query and adapt it to use as a bug report.

18.4 Use the xlsxwriter Issue tracker on GitHub

The xlsxwriter issue tracker is on GitHub.

18.5 Pointers for submitting a bug report

1. Describe the problem as clearly and as concisely as possible.

115

https://github.com/jmcnamara/xlsxwriter.lua/issues

Creating Excel files with xlsxwriter.lua, Release 0.0.4

2. Include a sample program. This is probably the most important step. It is generally easier to
describe a problem in code than in written prose.

3. The sample program should be as small as possible to demonstrate the problem. Don’t copy
and paste large non-relevant sections of your program.

A sample bug report is shown below. This format helps analyse and respond to the bug report
more quickly.

Issue with SOMETHING

I am using xlsxwriter to do SOMETHING but it appears to do SOMETHING ELSE.

I am using Lua version X.Y and xlsxwriter x.y.z.

Here is some code that demonstrates the problem:

local Workbook = require "xlsxwriter.workbook"
local workbook = Workbook:new("hello_world.xlsx")
local worksheet = workbook:add_worksheet()
worksheet:write("A1", "Hello world")
workbook:close()

116 Chapter 18. Reporting Bugs

CHAPTER

NINETEEN

FREQUENTLY ASKED QUESTIONS

The section outlines some answers to frequently asked questions.

19.1 Q. Can XlsxWriter use an existing Excel file as a template?

No.

Xlsxwriter is designed only as a file writer. It cannot read or modify an existing Excel file.

19.2 Q. Why do my formulas show a zero result in some, non-Excel
applications?

Due to wide range of possible formulas and interdependencies between them xlsxwriter
doesn’t, and realistically cannot, calculate the result of a formula when it is written to an XLSX
file. Instead, it stores the value 0 as the formula result. It then sets a global flag in the XLSX file to
say that all formulas and functions should be recalculated when the file is opened.

This is the method recommended in the Excel documentation and in general it works fine with
spreadsheet applications. However, applications that don’t have a facility to calculate formulas,
such as Excel Viewer, or several mobile applications, will only display the 0 results.

If required, it is also possible to specify the calculated result of the formula using the optionalvalue parameter in write_formula():

worksheet:write_formula('A1', '=2+2', num_format, 4)

19.3 Q. Can I apply a format to a range of cells in one go?

Currently no. However, it is a planned features to allow cell formats and data to be written sepa-
rately.

117

Creating Excel files with xlsxwriter.lua, Release 0.0.4

19.4 Q. Is feature X supported or will it be supported?

All supported features are documented. In time the feature set should expand to be the same as
the Python XlsxWriter module.

19.5 Q. Is there an “AutoFit” option for columns?

Unfortunately, there is no way to specify “AutoFit” for a column in the Excel file format. This feature
is only available at runtime from within Excel. It is possible to simulate “AutoFit” by tracking the
width of the data in the column as your write it.

19.6 Q. Do people actually ask these questions frequently, or at all?

Apart from this question, yes.

118 Chapter 19. Frequently Asked Questions

http://xlsxwriter.readthedocs.org

CHAPTER

TWENTY

CHANGES IN XLSXWRITER

This section shows changes and bug fixes in the XlsxWriter module.

20.1 Release 0.0.4 - April 14 2014

• Added the define_name() method to create defined names and ranges in a workbook or
worksheet.

• Added the set_properties() workbook method for setting document properties.

• Added the worksheets() method as an accessor for the worksheets in a workbook.

20.2 Release 0.0.3 - April 9 2014

• Added the merge_range() method to merge worksheet cells.

20.3 Release 0.0.2 - April 6 2014

• Added The Worksheet Class (Page Setup) methods.

20.4 Release 0.0.1 - March 29 2014

• First public release.

119

Creating Excel files with xlsxwriter.lua, Release 0.0.4

120 Chapter 20. Changes in XlsxWriter

CHAPTER

TWENTYONE

AUTHOR

XlsxWriter was written by John McNamara.

• GitHub

• Twitter @jmcnamara13

• Coderwall

• Ohloh

You can contact me at jmcnamara@cpan.org.

21.1 Donations

If you would like to donate to the xlsxwriter project to keep it active or to pay for the PDF copy of
the documentation you can do so via PayPal.

121

https://github.com/jmcnamara
https://twitter.com/jmcnamara13
https://coderwall.com/jmcnamara
https://www.ohloh.net/p/XlsxWriter/contributors/2717606196831029
mailto:jmcnamara@cpan.org
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=RRZCPSL65X858

Creating Excel files with xlsxwriter.lua, Release 0.0.4

122 Chapter 21. Author

CHAPTER

TWENTYTWO

LICENSE

Copyright (c) 2014, John McNamara <jmcnamara@cpan.org>

The MIT/X11 License.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

123

mailto:jmcnamara@cpan.org

Creating Excel files with xlsxwriter.lua, Release 0.0.4

124 Chapter 22. License

INDEX

A
activate() (built-in function), 42
add_format() (built-in function), 23
add_worksheet() (built-in function), 22

C
cell_to_rowcol() (built-in function), 82
center_horizontally() (built-in function), 49
center_vertically() (built-in function), 49
close() (built-in function), 24
col_to_name() (built-in function), 82

D
define_name() (built-in function), 25

F
fit_to_pages() (built-in function), 55

G
get_name() (built-in function), 41

H
hide() (built-in function), 43
hide_gridlines() (built-in function), 54
hide_zero() (built-in function), 46

M
merge_range() (built-in function), 44

P
print_across() (built-in function), 55
print_area() (built-in function), 55
print_row_col_headers() (built-in function), 54

R
range() (built-in function), 83
repeat_columns() (built-in function), 53
repeat_rows() (built-in function), 53

right_to_left() (built-in function), 46
rowcol_to_cell() (built-in function), 81
rowcol_to_cell_abs() (built-in function), 81

S
select() (built-in function), 42
set_align() (built-in function), 66
set_bg_color() (built-in function), 70
set_bold() (built-in function), 61
set_border() (built-in function), 71
set_border_color() (built-in function), 73
set_bottom() (built-in function), 72
set_bottom_color() (built-in function), 73
set_center_across() (built-in function), 67
set_column() (built-in function), 40
set_fg_color() (built-in function), 71
set_first_sheet() (built-in function), 44
set_font_color() (built-in function), 61
set_font_name() (built-in function), 60
set_font_script() (built-in function), 62
set_font_size() (built-in function), 60
set_font_strikeout() (built-in function), 62
set_footer() (built-in function), 53
set_h_pagebreaks() (built-in function), 57
set_header() (built-in function), 50
set_hidden() (built-in function), 66
set_indent() (built-in function), 68
set_italic() (built-in function), 61
set_landscape() (built-in function), 47
set_left() (built-in function), 72
set_left_color() (built-in function), 73
set_locked() (built-in function), 65
set_margins() (built-in function), 49
set_num_format() (built-in function), 62
set_page_view() (built-in function), 47
set_paper() (built-in function), 48
set_pattern() (built-in function), 70
set_portrait() (built-in function), 47

125

Creating Excel files with xlsxwriter.lua, Release 0.0.4

set_print_scale() (built-in function), 57
set_properties() (built-in function), 24
set_right() (built-in function), 72
set_right_color() (built-in function), 74
set_rotation() (built-in function), 68
set_row() (built-in function), 38
set_shrink() (built-in function), 69
set_start_page() (built-in function), 56
set_tab_color() (built-in function), 46
set_text_justlast() (built-in function), 69
set_text_wrap() (built-in function), 67
set_top() (built-in function), 72
set_top_color() (built-in function), 73
set_underline() (built-in function), 62
set_v_pagebreaks() (built-in function), 58
set_zoom() (built-in function), 45

W
worksheets() (built-in function), 27
write() (built-in function), 29
write_array_formula() (built-in function), 35
write_blank() (built-in function), 36
write_boolean() (built-in function), 36
write_date_string() (built-in function), 38
write_date_time() (built-in function), 37
write_formula() (built-in function), 33
write_number() (built-in function), 33
write_string() (built-in function), 31

126 Index

	Introduction
	Getting Started with xlsxwriter
	Installing xlsxwriter
	Running a sample program
	Documentation

	Tutorial 1: Create a simple XLSX file
	Tutorial 2: Adding formatting to the XLSX File
	Tutorial 3: Writing different types of data to the XLSX File
	The Workbook Class
	Constructor
	workbook:add_worksheet()
	workbook:add_format()
	workbook:close()
	workbook:set_properties()
	workbook:define_name()
	workbook:worksheets()

	The Worksheet Class
	worksheet:write()
	worksheet:write_string()
	worksheet:write_number()
	worksheet:write_formula()
	worksheet:write_array_formula()
	worksheet:write_blank()
	worksheet:write_boolean()
	worksheet:write_date_time()
	worksheet:write_date_string()
	worksheet:set_row()
	worksheet:set_column()
	worksheet:get_name()
	worksheet:activate()
	worksheet:select()
	worksheet:hide()
	worksheet:set_first_sheet()
	worksheet:merge_range()
	worksheet:set_zoom()
	worksheet:right_to_left()
	worksheet:hide_zero()
	worksheet:set_tab_color()

	The Worksheet Class (Page Setup)
	worksheet:set_landscape()
	worksheet:set_portrait()
	worksheet:set_page_view()
	worksheet:set_paper()
	worksheet:center_horizontally()
	worksheet:center_vertically()
	worksheet:set_margins()
	worksheet:set_header()
	worksheet:set_footer()
	worksheet:repeat_rows()
	worksheet:repeat_columns()
	worksheet:hide_gridlines()
	worksheet:print_row_col_headers()
	worksheet:print_area()
	worksheet:print_across()
	worksheet:fit_to_pages()
	worksheet:set_start_page()
	worksheet:set_print_scale()
	worksheet:set_h_pagebreaks()
	worksheet:set_v_pagebreaks()

	The Format Class
	format:set_font_name()
	format:set_font_size()
	format:set_font_color()
	format:set_bold()
	format:set_italic()
	format:set_underline()
	format:set_font_strikeout()
	format:set_font_script()
	format:set_num_format()
	format:set_locked()
	format:set_hidden()
	format:set_align()
	format:set_center_across()
	format:set_text_wrap()
	format:set_rotation()
	format:set_indent()
	format:set_shrink()
	format:set_text_justlast()
	format:set_pattern()
	format:set_bg_color()
	format:set_fg_color()
	format:set_border()
	format:set_bottom()
	format:set_top()
	format:set_left()
	format:set_right()
	format:set_border_color()
	format:set_bottom_color()
	format:set_top_color()
	format:set_left_color()
	format:set_right_color()

	Working with Formats
	Creating and using a Format object
	Format methods and Format properties
	Format Colors
	Format Defaults
	Modifying Formats

	Working with Cell Notation
	Relative and Absolute cell references

	Cell Utility Functions
	rowcol_to_cell()
	rowcol_to_cell_abs()
	cell_to_rowcol()
	col_to_name()
	range()
	range_abs()

	Working with Dates and Time
	Working with Colors
	Working with Memory and Performance
	Performance Figures

	Examples
	Example: Hello World
	Example: Simple Feature Demonstration
	Example: Array formulas
	Example: Merging Cells
	Example: Adding Defined Names
	Example: Write UTF-8 Strings
	Example: Convert a UTF-8 file to a Worksheet
	Example: Setting Document Properties
	Example: Setting Worksheet Tab Colours
	Example: Hiding Worksheets
	Example: Adding Headers and Footers to Worksheets
	Example: Indenting Text in a Cell

	Known Issues and Bugs
	Content is Unreadable. Open and Repair
	Formulas displayed as #NAME? until edited
	Formula results displaying as zero in non-Excel applications
	Strings aren't displayed in Apple Numbers in `constant_memory' mode
	Images not displayed correctly in Excel 2001 for Mac and non-Excel applications

	Reporting Bugs
	Upgrade to the latest version of the module
	Read the documentation
	Look at the example programs
	Use the xlsxwriter Issue tracker on GitHub
	Pointers for submitting a bug report

	Frequently Asked Questions
	Q. Can XlsxWriter use an existing Excel file as a template?
	Q. Why do my formulas show a zero result in some, non-Excel applications?
	Q. Can I apply a format to a range of cells in one go?
	Q. Is feature X supported or will it be supported?
	Q. Is there an ``AutoFit'' option for columns?
	Q. Do people actually ask these questions frequently, or at all?

	Changes in XlsxWriter
	Release 0.0.4 - April 14 2014
	Release 0.0.3 - April 9 2014
	Release 0.0.2 - April 6 2014
	Release 0.0.1 - March 29 2014

	Author
	Donations

	License
	Index

